Selection mechanism at the onset of active turbulence
2019, Nature Physics
https://doi.org/10.1038/S41567-018-0411-6Abstract
Active turbulence describes a flow regime that is erratic, and yet endowed with a characteristic length scale 1 . It arises in animate soft-matter systems as diverse as bacterial baths 2 , cell
References (31)
- Giomi, L. Geometry and topology of Turbulence in active nematics. Physical Review X 5, 1-11 (2015).
- Wensink, H. H. et al. Meso-scale turbulence in living fluids. Proceedings of the National Academy of Sciences 109, 14308-14313 (2012).
- Blanch-Mercader, C. et al. Turbulent dynamics of epithelial cell cultures. Physical Review Letters 120, 208101 (2018).
- Guillamat, P., Ignés-Mullol, J. & Sagués, F. Taming active turbulence with patterned soft interfaces. Nature Communications 8, 1-8 (2017).
- Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431-434 (2012).
- Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Reviews of Modern Physics 65, 851-1112 (1993).
- Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter. Phys. 1, 323-345 (2010).
- Marchetti, M. C. et al. Hydrodynamics of soft active matter. Reviews of Modern Physics 85, 1143-1189 (2013).
- Menzel, A. M. Tuned, driven, and active soft matter. Physics Reports 554, 1-45 (2015).
- Bratanov, V., Jenko, F. & Frey, E. New class of turbulence in active fluids. Proceedings of the National Academy of Sciences 112, 15048-15053 (2015).
- Urzay, J., Doostmohammadi, A. & Yeomans, J. M. Multi-scale statistics of turbulence motor- ized by active matter. Journal of Fluid Mechanics 822, 762-773 (2017).
- Slomka, J. & Dunkel, J. Symmetry breaking and turbulence in active fluids. Proceedings of the National Academy of Sciences 114, 15048-15053 (2017).
- Thampi, S. P., Golestanian, R. & Yeomans, J. M. Instabilities and topological defects in active nematics. EPL 105, 18001 (2014).
- Giomi, L., Bowick, M. J., Mishra, P., Sknepnek, R. & Marchetti, M. C. Defect dynamics in active nematics. Phil Trans R Soc A 372, 20130365 (2014).
- Aditi Simha, R. & Ramaswamy, S. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Physical review letters 89, 058101 (2002).
- Edwards, S. A. & Yeomans, J. M. Spontaneous flow states in active nematics: A unified picture. Europhysics Letters 85, 18008 (2009).
- Zhou, S., Sokolov, A., Lavrentovich, O. D. & Aranson, I. S. Living liquid crystals. Proc Natl Acad Sci U S A 111, 1265-70 (2014).
- Duclos, G. et al. Spontaneous shear flow in confined cellular nematics. Nat Phys 14, 728-732 (2018).
- Guillamat, P., Ignés-Mullol, J. & Sagués, F. Control of active liquid crystals with a magnetic field. Proc Natl Acad Sci USA 113, 54985502 (2016).
- Giomi, L., Bowick, M. J., Ma, X. & Marchetti, M. C. Defect annihilation and proliferation in active Nematics. Physical Review Letters 110, 228101 (2013).
- Thampi, S. P., Golestanian, R. & Yeomans, J. M. Velocity correlations in an active nematic. Physical Review Letters 111, 118101 (2013).
- Pismen, L. M. & Sagués, F. Viscous dissipation and dynamics of defects in an active nematic interface. European Physical Journal E 40, 1-8 (2017).
- Jülicher, F., Kruse, K., Prost, J. & Joanny, J. F. Active behavior of the Cytoskeleton. Physics Reports 449, 3-28 (2007).
- Prost, J., Jülicher, F. & Joanny, J. F. Active gel physics. Nature Physics 11, 111-117 (2015).
- Voituriez, R., Joanny, J. F. & Prost, J. Spontaneous flow transition in active polar gels. EPL 70, 404-410 (2005).
- Guillamat, P., Ignés-Mullol, J., Shankar, S., Marchetti, M. C. & Sagues, F. Probing the shear viscosity of an active nematic film. Phys Rev E 94, 060602(R) (2016).
- Gao, T., Blackwell, R., Glaser, M. A., Betterton, M. D. & Shelley, M. J. Multiscale polar theory of microtubule and motor-protein assemblies. Physical Review Letters 114, 048101 (2015).
- Gao, T., Betterton, M. D., Jhang, A.-S. & Shelley, M. J. Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid. Physical Review Fluids 2, 093302 (2017).
- Henkin, G., DeCamp, S. J., Chen, D. T. N., Sanchez, T. & Dogic, Z. Tunable dynamics of microtubule-based active isotropic gels. Phil Trans R Soc A 372, 20140142 (2014).
- Hemingway, E. J., Mishra, P., Marchetti, M. C. & Fielding, S. M. Correlation lengths in hydrodynamic models of active nematics. Soft Matter 12, 7943-7952 (2016).
- Acknowledgements The authors thank R. Alert and M. Shelley for fruitful discussions, and the two anonymous reviewers for their useful comments that helped improve the theoretical analysis. B.M.-P. thanks S. Marco for advising in the image analysis. The authors are indebted to the Brandeis University MRSEC Biosynthesis facility for providing the tubulin. We thank M. Pons, A. LeRoux, and G. Iruela (Universitat de Barcelona) for their assistance in the expression of motor proteins. B.M.-P., J.I.-M., and F.S. acknowl- edge funding from MINECO (project FIS2016-78507-C2-1-P, AEI/FEDER, EU). J.C. acknowledges sup- port from MINECO (project FIS2016-78507-C2-2-P, AEI/FEDER, EU) and Generalitat de Catalunya under project 2014-SGR-878. B.M. acknowledges funding from UAM under the IFIMAC Master Grant, and from Generalitat de Catalunya through a FI-2018 PhD Fellowship. Brandeis University MRSEC Biosynthesis facility is supported by NSF MRSEC DMR-1420382.