Academia.eduAcademia.edu

Outline

Periodic interpolation and wavelets on sparse grids

1998, Numerical Algorithms

https://doi.org/10.1023/A:1012041629709

Abstract

Nested spaces of multivariate periodic functions forming a non-stationary multiresolution analysis are investigated. The scaling functions of these spaces are fundamental polynomials of Lagrange interpolation on a sparse grid. The approach based on Boolean sums leads to sample and wavelet spaces of significantly lower dimension and good approximation order. The algorithms for complete decomposition and reconstruction are of simple structure and low complexity.

References (24)

  1. G. Baszenski and F.-J. Delvos, A discrete Fourier transform scheme for Boolean sums of trigono- metric operators, in: Multivariate Approximation Theory IV, eds. C.K. Chui, W. Schempp and K. Zeller, International Series of Numerical Mathematics 90 (Birkhäuser, Basel, 1989) pp. 15-24.
  2. K. Bittner, Fast algorithms for periodic spline wavelets on sparse grids, SIAM J. Sci. Comput. (1998) to appear.
  3. C.K. Chui, An Introduction to Wavelets (Academic Press, New York, 1992).
  4. C.K. Chui and H.N. Mhaskar, On trigonometric wavelets, Constr. Approx. 9 (1993) 167-190.
  5. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics (SIAM, Philadelphia, PA, 1992).
  6. P. Davis, Circulant Matrices (Wiley/Interscience, New York, 1979).
  7. F.-J. Delvos and W. Schempp, Boolean Methods in Interpolation and Approximation, Pitman Re- search Notes in Mathematics Series (Longman Sci. Tech., Harlow, 1989).
  8. R.A. DeVore, S.V. Konyagin and V.N. Temlyakov, Hyperbolic wavelet approximation, Constr. Ap- prox. 14 (1998) 1-26.
  9. R.A. DeVore, P. Petrushev and V.N. Temlyakov, Multivariate trigonometric approximation with frequencies from the hyperbolic cross, Mat. Zametki 56 (1994) 36-63, English translation in Math. Notes 56 (1994).
  10. M. Griebel and P. Oswald, On additive Schwarz preconditioners for sparse grid discretizations, Numer. Math. 66 (1994) 449-464.
  11. M. Griebel and P. Oswald, Tensor product type subspace splitting and multilevel iterative methods for anisotropic problems, Adv. Comput. Math. 4 (1995) 171-206.
  12. Y.W. Koh, S.L. Lee and H.H. Tan, Periodic orthogonal splines and wavelets, Appl. Comput. Harmon. Anal. 2 (1995) 201-218.
  13. F.J. Narcowich and J.D. Ward, Wavelets associated with periodic basis functions, Appl. Comput. Harmon. Anal. 3 (1996) 40-56.
  14. G. Plonka and M. Tasche, A unified approach to periodic wavelets, in: Wavelets: Theory, Algo- rithms, and Applications, eds. C.K. Chui, L. Montefusco and L. Puccio (Academic Press, New York, 1994) pp. 137-151.
  15. G. Pöplau and F. Sprengel, Some error estimates for periodic interpolation on full and sparse grids, in: Curves and Surfaces with Applications in CAGD, eds. A. Le Méhauté, C. Rabut and L.L. Schumaker (Vanderbilt University Press, Nashville, 1997) pp. 355-362.
  16. J. Prestin and E. Quak, Trigonometric interpolation and wavelet decomposition, Numer. Algorithms 9 (1995) 293-318.
  17. J. Prestin and K. Selig, Interpolatory and orthonormal trigonometric wavelets, in: Signal and Image Representation in Combined Spaces, eds. J. Zeevi and R. Coifman (Academic Press, 1998) to appear.
  18. A.A. Privalov, Ob odnom ortogonalnom trigonometricheskom basise (On an orthogonal trigono- metric basis), Mat. Sbornik 182 (1991) 384-394.
  19. H.-J. Schmeißer and H. Triebel, Topics in Fourier Analysis and Function Spaces (Akadem. Ver- lagsgesellschaft Geest & Portig, Leipzig, 1987).
  20. S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Math. Dokl. 4 (1963) 240-243.
  21. F. Sprengel, Multivariate periodic interpolating wavelets, in: Approximation Theory, Wavelets, and Applications, ed. S.P. Singh (Kluwer Academic, Dordrecht, 1995) pp. 473-483.
  22. F. Sprengel, Interpolation and wavelet decomposition of multivariate periodic functions, Ph.D. thesis, University of Rostock (1997).
  23. V.N. Temlyakov, Approximation of Periodic Functions (Nova Science, New York, 1993).
  24. C. Zenger, Sparse grids, in: Notes on Numerical Fluid Mechanics, ed. W. Hackbusch, Vol. 31 (Vieweg, Braunschweig, 1991) pp. 297-301.