Academia.eduAcademia.edu

Outline

AI in the media and creative industries

2019, arXiv (Cornell University)

Abstract

Fabrizio Falchi -CNR (it), Ander Garcia -Vicomtech (es), Joost Geurts -Inria (fr), Jaume Gibert -Eurecat (es), Guillaume Gravier -CNRS & Inria (fr), Hadmut Holken -Holken consultants (fr), Hartmut Koenitz -HKU (nl), Sylvain Lefebvre -Inria (fr), Antoine Liutkus -Inria (fr), Fabien Lotte -Inria (fr), Andrew Perkis -NTNU (no), Rafael Redondo -Eurecat (es), Enrico Turrin -FEP (be), Thierry Viéville -Inria (fr),

References (50)

  1. Briot, J. P., & Pachet, F. (2017). Music Generation by Deep Learning-Challenges and Directions. arXiv preprint arXiv:1712.04371 .
  2. Mor, N., Wolf, L., Polyak, A., & Taigman, Y. (2018). A Universal Music Translation Network. arXiv preprint arXiv:1805.07848 .
  3. Nika, J., Déguernel, K., Chemla, A., Vincent, E., & Assayag, G. (2017). DYCI2 agents: merging the "free", "reactive", and "scenario-based" music generation paradigms. In International Computer Music Conference .
  4. Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.W. & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. In SSW (p. 125). References [Goodfellow 2014] J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems -Volume 2 (NIPS'14)
  5. Mansimov 2016] Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba & Ruslan Salakhutdinov. Generating Images from Captions with Attention. ICLR2016
  6. Mordvintsev 2015] Mordvintsev, Alexander, Christopher Olah, and Mike Tyka, Inceptionism: Going deeper into neural networks. Google Research Blog [Gatys 2016] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge. Image Style Transfer Using Convolutional Neural Networks. ECCV 2016
  7. Elgammal 2017] Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, Marian Mazzone. CAN: Creative Adversarial Networks Generating "Art" by Learning About Styles and Deviating from Style Norms [Jin 2017] Yanghua Jin, Jiakai Zhang, Minjun Li, Yingtao Tian, Huachun Zhu, Zhihao Fang. Towards the Automatic Anime Characters Creation with Generative Adversarial Networks.
  8. Karras 2018] Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018
  9. Gharbi 2017] Michaël Gharbi, Jiawen Chen, Jonathan T. Barron, Samuel W. Hasinoff, Frédo Durand, Deep Bilateral Learning for Real-Time Image Enhancement, ArXiv:1707.02880v2 [Yan 2014] Zhicheng Yan, Hao Zhang, Baoyuan Wang, Sylvain Paris, Yizhou Yu, Automatic Photo Adjustment Using Deep Neural Networks, arXiv:1412.7725v2
  10. Gatys 2015] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, A Neural Algorithm of Artistic Style, arXiv:1508.06576
  11. Yeh 2016] Raymond A. Yeh, Chen Chen, Teck Yian Lim, Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do, Semantic Image Inpainting with Deep Generative Models, arXiv:1607.07539
  12. Ledig 2016] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi, Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, arXiv:1609.04802 [Razavian 2014] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, Stefan Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition, arXiv:1403.6382
  13. Amato 2017] Giuseppe Amato, Fabrizio Falchi, Claudio Gennaro, and Fausto Rabitti. 2017. Searching and annotating 100M Images with YFCC100M-HNfc6 and MI-File. In Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing (CBMI '17). ACM, New York, NY, USA, Article 26, 4 pages. DOI: https://doi.org/10.1145/3095713.3095740
  14. Mao 2014] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, Alan Yuille, Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN), arXiv:1412.6632
  15. Redmon 2016] Joseph Redmon, Ali Farhadi, YOLO9000: Better, Faster, Stronger, arXiv:1612.08242 [Cao 2017] Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, Andrew Zisserman, VGGFace2: A dataset for recognising faces across pose and age, arXiv:1710.08092v2
  16. Santoro 2017] Adam Santoro, David Raposo, David G.T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap, A simple neural network module for relational reasoning, arXiv:1706.01427 [Carrara 2016] Fabio Carrara, Andrea Esuli, Tiziano Fagni, Fabrizio Falchi, Alejandro Moreo Fernández, Picture It In Your Mind: Generating High Level Visual Representations From Textual Descriptions, arXiv:1606.07287 [Krizhevsky 2012] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems -Volume 1 (NIPS'12), F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.), Vol. 1. Curran Associates Inc., USA, 1097-1105.
  17. Donahue 2013] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, Trevor Darrell, DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, arXiv:1310.1531 [Taigman 2014] Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. 2014. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In Proceedings of the 2014 IEEE Conference on References [Attene 2018] Design, Representations, and Processing for Additive Manufacturing, M. Attene, M. Livesu, S. Lefebvre, T. Funkhouser, S. Rusinkiewicz, S. Ellero, J. Martínez, A.H. Bermano, Morgan & Claypool Publishers -Synthesis Lectures on Visual Computing (2018)
  18. Bishop 2013] Bishop, C. M. (2013). Model-based machine learning. Phil. Trans. R. Soc. A , 371 (1984), 20120222. [Chen 2007] Chen, J. (2007). Flow in games (and everything else). Communications of the ACM , 50 (4), 31-34. [Cordonnier 2017] G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, and M.-P. Cani. Authoring landscapes by combining ecosystem and terrain erosion simulation. ACM Transactions on Graphics, 36(4):134:1-134:12, 2017
  19. Cowley 2016a] Cowley, B. U., & Charles, D. (2016a). Adaptive Artificial Intelligence in Games: Issues, Requirements, and a Solution through Behavlets-based General Player Modelling. arXiv preprint arXiv:1607.05028 .
  20. Cowley 2016b] Cowley, B., Filetti, M., Lukander, K., Torniainen, J., Henelius, A., Ahonen, L., ... & Ravaja, N. (2016b). The psychophysiology primer: a guide to methods and a broad review with a focus on human-computer interaction. Foundations and Trends® in Human-Computer Interaction , 9 (3-4), 151-308.
  21. Drachen 2010] Drachen, A., Nacke, L. E., Yannakakis, G., & Pedersen, A. L. (2010, July). Correlation between heart rate, electrodermal activity and player experience in first-person shooter games. In Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games (pp. 49-54). ACM.
  22. Frey, J., Mühl, C., Lotte, F., & Hachet, M. (2014). Review of the use of electroencephalography as an evaluation method for human-computer interaction. Proc. PhyCS, 2014
  23. Frey 2016] Frey, J., Daniel, M., Castet, J., Hachet, M., & Lotte, F. (2016, May). Framework for electroencephalography-based evaluation of user experience. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 2283-2294). ACM.
  24. Gatys 2015] L. Gatys, A. Ecker, M. Bethge, Texture Synthesis Using Convolutional Neural Networks. Advances in Neural Information Processing Systems, pages 262--270}, 2015
  25. Herbrich 2007] Herbrich, R., Minka, T., & Graepel, T. (2007). TrueSkill™: a Bayesian skill rating system. In Advances in neural information processing systems (pp. 569-576).
  26. Lasram 2012] A. Lasram, S. Lefebvre, C. Damez. Procedural texture preview. Computer Graphics Forum, 31, pages 413-420. 2012
  27. Merrell 2010] P. Merrell, Er. Schkufza, and V. Koltun. Computer-generated residential building layouts. ACM Transactions on Graphics, 29(6):181:1-181:12, 2010.
  28. Merrell 2007] P. Merrell. Example-based model synthesis. In Proceedings of I3D, pages 105-112, 2007. [Prusinkiewicz 1996] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-Verlag, Berlin, Heidelberg, 1996
  29. C. Ma, N. Vining, S. Lefebvre, and A. Sheffer. Game level layout from design specification. Computer Graphics Forum, 33(2):95-104, 2014.
  30. Majerowicz 2013] L. Majerowicz, A. Shamir, A. Sheffer, H. H. Hoos, Filling Your Shelves: Synthesizing Diverse Style-Preserving Artifact Arrangements, IEEE TVCG, Nov, 2013.
  31. Matusik 2005] W. Matusik, M. Zwicker, F. Durand. Texture design using a simplicial complex of morphable textures. ACM Transactions on Graphics, 3(24), 2005
  32. Mitra 2018] CreativeAI: Deep Learning for Computer Graphics. Niloy J. Mitra, Iasonas Kokkinos, Paul Guerrero, Nils Thuerey, Tobias Ritschel. Course at SIGGRAPH Asia 2018 [Mühl 2014] Mühl, C., Allison, B., Nijholt, A., & Chanel, G. (2014). A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges. Brain-Computer Interfaces , 1 (2), 66-84.
  33. Nacke 2008] Nacke, L., & Lindley, C. A. (2008, November). Flow and immersion in first-person shooters: measuring the player's gameplay experience. In Proceedings of the 2008 Conference on Future Play: Research, Play, Share (pp. 81-88). ACM.
  34. Nacke 2013] Nacke, L. E. (2013). An introduction to physiological player metrics for evaluating games. In Game Analytics (pp. 585-619). Springer, London.
  35. Parish 2001] Y. I. H. Parish and P. Müller. Procedural modeling of cities. In Proceedings of SIGGRAPH, pages 301-308, 2001.
  36. Sims 1991] K. Sims. Artificial evolution for computer graphics. Proceedings of ACM SIGGRAPH, 1991. [Shugrina 2015] Fab Forms: Customizable Objects for Fabrication with Validity and Geometry Caching M. Shugrina, A. Shamir, W. Matusik. ACM Transactions on Graphics 4(34), 2015
  37. Talton 2009] J. Talton, D. Gibson, L. Yang, P. Hanrahan, V. Koltun. Exploratory modeling with collaborative design spaces. ACM Transactions on Graphics, 5(28), pages 167--177, 2009
  38. Tondello 2017] Tondello, G. F., Orji, R., & Nacke, L. E. (2017, July). Recommender systems for personalized gamification. In Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization (pp. 425-430). ACM.
  39. Hoffmann H., Kohl C., "KI-Report 2018. Marktüberblick zum Einsatz von künstlicher Intelligenz in Medien und Publishing. Eine Übersicht zum Angebot im deutschsprachigen Raum". http://hspartner.de/jsp292/site/hauptmenue/publikationen/studien/ki
  40. The Future Impact of A. I. on the Publishing Industry, study in progress. http://publishing.gouldfinch.com/
  41. Bläsi, Prof. Dr. C., "Machines as editors, machines as readers?", Interview for Mainzer Buch Wissenschaft, 7 February 2019. https://www.buchwissenschaft.uni-mainz.de/presse/machines-as-editors-machines-as-readers/
  42. Castro, D, and Steinberg, M. (2017), "Blocked: Why Some Companies Restrict Data Access to Reduce Competition and How Open APIs Can Help", Center for Data Innovation. http://dx.doi.org/10.2139/ssrn.3108763
  43. Freeman, R.B. (2014), "Who Owns the Robots Rules the World", IZA World of Labor, May 2014. www.sole-jole.org/Freeman.pdf
  44. González Otero B. and Quintais, J.P. (2018), "Before the Singularity: Copyright and the Challenges of Artificial Intelligence", Kluwer Copyright Blog, September 25, 2018. http://copyrightblog.kluweriplaw.com/2018/09/25/singularity-copyright-challenges-artificial-intel ligence
  45. Guadamuz A. (2017) "Artificial intelligence and copyright", WIPO Magazine, No. 5/2017(October), pp. 14-19. https://www.wipo.int/wipo_magazine/en/2017/05/article_0003.html
  46. Röder, M. (2018), "Artificial Intelligence and Copyright: The Rise of the Machine", Presentation at the IFRRO International Conference, Athens, 21 October 2018
  47. Rognstad, O.-A. (2018), "Artificial Intelligence and Copyright Ownership", presentation at the conference EU copyright, quo vadis? From the EU copyright package to the challenges of Artificial Intelligence, Brussels, 25 May 2018
  48. Acquisition Numérique et Télévisualisation d'Images Organisées en Pages d'Ecriture / Digital Acquisition and Televisualisation of Images Organized as written Pages [2] in France: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000000809647&categorieLien=id
  49. Media use in the European Union 2014 http://ec.europa.eu/public_opinion/archives/eb/eb82/eb82_media_en.pdf
  50. NEM-Access Report: Opening Doors to Universal Access to the Media. February 2016. http://nem-initiative.org/wp-content/uploads/2016/03/NEM-ACCESS-Policy-suggestions.pdf