Plane square tilings
2010, Arxiv preprint arXiv:1101.0223
Abstract
We consider here square tilings of the plane. By extending the formalism introduced in [3] we build a correspondence between plane maps endowed with an harmonic vector and square tilings satisfying a condition of regularity. In the case of periodic plane square tiling the relevant space of harmonic vectors is actually isomorphic to the first homology group of a torus. So, periodic plane square tilings are described by two parameters and the set of parameters is split into angular sectors.
References (12)
- k-1,l+1) a(k,l+1) b(k-1,l) b(k,l) b(k+1,l) a(k-1,l) a(k,l) b(k-1,l-1) b(k,l-1)
- References
- A. Bölcskei, Classification of unilateral and equitransitive tilings by squares of three sizes, Beiträge zur Algebra und Geometrie 41 (2000) 267-277.
- G. Brinkmann, Isomorphism rejection in structure generation programs, Dis- crete mathematical chemistry, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 51 (Amer. Math. Soc., 2000) 25-38.
- R. L. Brooks, C. A. B. Smith A. H. Stone and W. T. Tutte, The dissection of rectangles into squares, Duke Math. J. 7 (1940) 312-340.
- O. Delgado, D. Huson and E. Zamorzaeva, The classification of 2-isohedral tilings of the plane, Geometriae Dedicata 42 (1992) 43-117.
- M. Dutour Sikirić, M. Deza, 4-regular and self-dual analogs of fullerenes, Math- ematics and Topology of Fullerenes, Lecture notes in physics, 2010, to appear.
- I. Gambini, Quant aux carrés carrelés, PhD thesis Université de la Méditerranée, 1999.
- B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman (1987) 72-81.
- H. Martini, E. Makai and V. Soltan, Unilateral tilings of the plane with squares of three sizes, Beiträge zur Algebra und Geometrie 39 (1998) 481-495.
- M. Nakahara, Geometry, Topology and physics, Institue of physics publishing, 1989.
- D. Schattschneider, Unilateral and Equitransitive tilings by squares, Discrete Comput. Geom. 24 (2000) 519-515.