A metal-insulator transition for the almost Mathieu model
1983, Communications in Mathematical Physics
Abstract
We study the spectrum of the almost Mathieu hamiltonian : where θ is an irrational number and x is in the circle ΊΓ. For a small enough coupling constant μ and any x there is a closed energy set of non-zero measure in the absolutely continuous spectrum of H. For sufficiently high μ and almost all x we prove the existence of a set of eigenvalues whose closure has positive measure. The two results are obtained for a subset of irrational numbers θ of full Lebesgue measure.
References (29)
- Anderson, P.N.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)
- Andre, G., Aubry, S.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc. 3, 133 (1980)
- Arnold, V.I.: Small divisor problems in classical and celestial mechanics. Usp. Mat. Nauk. 18, n° 6 (114), 91-192(1963)
- Avron, J., Simon, B.: Singular continuous spectrum for a class of almost periodic Jacobi matrices. Bull. Am. Math. Soc. 6, 81-86 (1982)
- Azbell, M.Ya.: Energy spectrum of a conducting electron in a magnetic field. Zh. Eksp. Teor. Fiz. 46, 929 (1964) and Sov. Phys. JETP 19, 634 (1964)
- Bellissard, J., Testard, D.: Almost periodic Hamiltonian: an algebraic approach. Marseille Preprint (1981)
- Schultz, H.J., Jerome, D., Mazaud, A., Ribault, M., Bechgaard, K.: Possibility of superconducting precursor effects in quasi one-dimensional organic conductors: theory and experiments. J. Phys. (France) 42, n° 7, 991-1002 (1981)
- Bloch, A.N.: Chemical trends in organic conductors: stabilization of the nearly one-dimensional metallic state. In: Organic conductors and semi-conductors. Proceeding 1976, Pal, L., Gruner, G., Janossy, A., Sόlyon, J. (eds.). Lecture Notes in Physics, Vol. 65, p. 317. Berlin, Heidelberg, New York: Springer 1977
- Dinaburg, E.I., Sinai, Ya.G.: The one dimensional Schrodinger equation with a quasi periodic potential. Funct. Anal. Appl. 9, 279 (1976)
- Falicov, L.M., Hsu, W.Y.: Level quantization and broadening for band electrons in a magnetic field: magneto-optics throughout the band. Phys. Rev. B13, 1595 (1976)
- Frohlich, H.: On the theory of superconductivity: the one-dimensional case. Proc. R. Soc. A223, 296 (1954)
- Gordon, A.Ya.: The point spectrum of the one-dimensional Schrodinger operator. Usp. Mat. Nauk. (Russian) 31, n° 4 (190), 257 (1976)
- Halmos, P.R.: Lectures on ergodic theory. New York: Chelsea Publ. Company 1961
- Harper, P.G.: Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A68, 874-892 (1955)
- Hermann, M.R.: Sur la conjugaison differentiate des diffeomorphismes du cercle a des rotations. Publ. Math. IHES n° 49, 5-234 (1979)
- Hermann, M.R.: Une methode pour minorer les exposants de Lyapounov. Preprint (1982), Ecole Polytechnique, Palaiseau (France)
- Hofstadter, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B14, 2239 (1976)
- Kolmogorov, A.N.: On conservation of conditionnally periodic motion for a small change in Hamilton's function. Dokl. Akad. Nauk. SSSR (Russian) 98, 527 (1954)
- Kolmogorov, A.N.: Theorie generate des systemes dynamiques et mecanique classique. Proc. Int. Congress of Math. Amsterdam (1957)
- Little, W.A.: Possibility of synthesizing an organic superconductor. Phys. Rev. A134, 1416 (1964)
- Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136-176 (1967)
- Peierls, R.S.: Quantum theory of solids, Chap. VII. Oxford: Pergamon Press 1955 and Z. Phys. 80, 763 (1933)
- Rauh, A.: Degeneracy of Landau levels in crystals. Phys. Stat. Solidi B65, K 131 (1974);
- Rύssmann, H.: On the one dimensional Schrodinger equation with a quasi-periodic potential. Ann. N. Y. Acad. Sci. 357, 90 (1980)
- Russmann, H.: Note on sums containing small divisors. Commun. Pure Appl. Math. 29, 755 (1976)
- Russmann, H.: On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus. In: Lecture Notes in Physics, Vol. 38, p. 598. Berlin, Heidelberg, New York: Springer 1975
- Sarnak, P.: Spectral behaviour of quasi-periodic potential. Commun. Math. Phys. 84, 377 (1982)
- Titchmarsh, E.C.: Eigenfunctions expansions associated with second order differential equations, Vol. 1. Oxford: Oxford University Press 1958
- Communicated by B. Simon Received May 13, 1982; in revised form June 28, 1982