Academia.eduAcademia.edu

Outline

The Exchange Fluctuation Theorem in Quantum Mechanics

2009, Progress of Theoretical and Experimental Physics

Abstract

We study the heat transfer between two finite quantum systems initially at different temperatures. We find that a recently proposed fluctuation theorem for heat exchange, namely the exchange fluctuation theorem [C. Jarzynski and D. K. Wójcik, Phys. Rev. Lett. 92 (2004), 230602], does not generally hold in the presence of a finite heat transfer as in the original form proved for weak coupling. As the coupling is weakened, the deviation from the theorem and the heat transfer vanish in the same order of the coupling. We then discover a condition for the exchange fluctuation theorem to hold in the presence of a finite heat transfer, namely the commutable-coupling condition. We explicitly calculate the deviation from the exchange fluctuation theorem as well as the heat transfer for simple models. We confirm for the models that the deviation indeed has a finite value as far as the coupling between the two systems is finite except for the special point of the commutable-coupling condition. We also confirm analytically that the commutable-coupling condition indeed lets the exchange fluctuation theorem hold exactly under a finite heat transfer.

References (25)

  1. D. J. Evans, E. G. D. Cohen and G. P. Morriss, Phys. Rev. Lett. 71 (1993), 2401.
  2. D. J. Evans and D. J. Searles, Phys. Rev. E 50 (1994), 1645.
  3. G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74 (1995), 2694.
  4. J. Kurchan, J. of Phys. A 31 (1998), 3719.
  5. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95 (1999), 333.
  6. C. Jarzynski, Phys. Rev. Lett. 78 (1997), 2690.
  7. G. E. Crooks, J. Stat. Phys. 90 (1998), 1481.
  8. G. E. Crooks, Phys. Rev. E 60 (1999), 2721.
  9. D. J. Evans and D. J. Searles, Adv. Phys. 51 (2002), 1529.
  10. E. M. Sevick, R. Prabhakar, S. R. Williams and D. J. Searles, Annu. Rev. Phys. Chem. 59 (2008), 603.
  11. D. M. Carberry, J. C. Reid, G. M. Wang, E. M. Sevick, D. J. Searles and D. J. Evans, Phys. Rev. Lett. 92 (2004), 140601.
  12. J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco (Jr) and C. Bustamante, Science 296 (2002), 1832.
  13. D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco (Jr) and C. Bustamante, Nature 437 (2005), 231.
  14. S. Yukawa, J. Phys. Soc. Jpn. 69 (2000), 2367.
  15. T. Monnai and S. Tasaki, cond-mat/0308337.
  16. A. E. Allahverdyan and Th. M. Nieuwenhuizen, Phys. Rev. E 71 (2005), 066102.
  17. M. F. Gelin and D. S. Kosov, Phys. Rev. E 78 (2008), 011116.
  18. J. Kurchan, cond-mat/0007360.
  19. H. Tasaki, cond-mat/0009244.
  20. S. Mukamel, Phys. Rev. Lett. 90 (2003), 170604.
  21. T. Monnai, Phys. Rev. E 72 (2005), 027102.
  22. P. Talkner, E. Lutz and P. Hanggi, Phys. Rev. E 75 (2007), 050102.
  23. C. Jarzynski and D. K. Wójcik, Phys. Rev. Lett. 92 (2004), 230602.
  24. J. J. Sakurai, Modern Quantum Mechanics (Benjamin, Menlo Park, California, 1985).
  25. J. Teifel and G. Mahler, Phys. Rev. E 76 (2007), 051126.