Academia.eduAcademia.edu

Outline

Extensions of the Thomas-Fermi approximation for finite nuclei

1976, Physics Letters B

https://doi.org/10.1016/0370-2693(76)90101-5

Abstract

Inhomogeneity terms in the expansion of the kinetic energy density are included and the Euler-Lagrange equations solved. Shell effects may be incorporated in a simple way. The study of spherical shapes of large systems is given as an illustration of the method proposed.

References (16)

  1. T.H.R. Skyrme, Phil. Mag. 1 (1956) 1043.
  2. D. Vautherin, Thesis Orsay 1969;
  3. D. Vautherin and D.M. Brink, Phys. Rev. C5 (1972) 626.
  4. S.A. Moszkowski, Phys. Rev. C2 (1970) 402.
  5. J.W. Negele and D. Vautherin, Phys. Rev. C5 (1972) 1472.
  6. K.A. Brueckner, J.R. Buchler, S. Jorna and R. Lombard, Phys. Rev. 171 (1968) 1188.
  7. C.F. Weizsacker, Z. Phys. 96 (1935) 431.
  8. D.A. Kirzhnits, Field theoretical methods in many-body systems (Pergamon Press, Oxford 1967) p. 52, see references therein.
  9. B.K. Jennings, Ph. D. Thesis, University of Mc Master (1976).
  10. M. Brack, B.K. Jennings and Y.H. Chu, submitted to Phys. Lett.
  11. R.K. Bhaduri and C.K. Ross, Phys. Rev. Letters 27 (1971) 606.
  12. R.J. Lombard, Ann. Phys. 77 (1973) 380.
  13. G.E. Brown, J.H. Gunn and P. Gould, Nucl. Phys. 46 (1963) 598;
  14. and Nguyen van Giai, private communi~ation.
  15. M. Beiner, H. Flocard, Nguyen van Giai and P. Quentin, Nuel. Phys. A238 (1975) 29.
  16. P.J. Siemens and H.A. Bethe, Phys. Rev. Letters 18 (1967) 704.