Academia.eduAcademia.edu

Outline

Quasi-projective and quasi-injective modules

1971, Pacific Journal of Mathematics

https://doi.org/10.2140/PJM.1971.36.713

Abstract

This paper contains results which are needed to prove a decomposition theorem for quasi-projective modules over left perfect rings. An iϋ-module M is called quasi-projective if and only if for every jβ-module A, every jβ-epimorphism q:M-~+ A, and every iϋ-homomorphism f:M->A, there is an f eΈτιά R {M) such that the diagram M M-^A >0 commutes, that is, qof = /. An i?-module M is called quasi-injective if and only if for every iϋ-module A, every jB-monomorphism j: A->M, and jβ-homomorphism /: A-+M, there is an /' e Έnd R (M) such that the diagram 0 >A- !-*M

References (40)

  1. G. Azumaya, Corrections and supplementaries to my paper concerning [Krullr Remak-Schmidf s theorem, Nagoya Math. J. 1 (1950), 117-124.
  2. A duality theory for injective modules, Amer. J. Math. 81 (1959), 249-278.
  3. 1 Completely faithful modules and self-injective rings, Nagoya Math. J. 27 (1966), 697-708.
  4. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
  5. f The Morita theorems, mimeographed notes.
  6. S. Eilenberg, Homological dimension and syzygies, Ann. of Math. 64 (1956), 328-336.
  7. M. Harada, Note on quasi-injective modules, Osaka J. Math. 2 (1965). 351-356.
  8. N. Jacobson, Structure of rings, Amer. Math. Soc, Providence, 1964.
  9. R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math Soc, 36 (1961), 260-268.
  10. J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Co., Toronto, 1966.
  11. E. Matlis, Injective modules over Noetherian rings, Pacific J. Math., 8 (1958), 511-528.
  12. L. E. T. Wu and J. P. Jans, On quasi-projectives, 111. J. Math. 11 (1967), 439-447. Received August 19, 1968. This paper is part of the author's thesis at Indiana University and was partially supported by NSF Grant No. GP5799 and an NSF Traineeship. Pacific Journal of Mathematics Vol. 36, No. 3
  13. BadMonth, 1971
  14. E. M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces of Ꮿ C (X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
  15. Joby Milo Anthony, Topologies for quotient fields of commutative integral domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
  16. V. Balakrishnan, G. Sankaranarayanan and C. Suyambulingom, Ordered cycle lengths in a random permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
  17. Victor Allen Belfi, Nontangential homotopy equivalences. . . . . . . . . . . . . . . . . . . . 615
  18. Jane Maxwell Day, Compact semigroups with square roots . . . . . . . . . . . . . . . . . . 623
  19. Norman Henry Eggert, Jr., Quasi regular groups of finite commutative nilpotent algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
  20. Paul Erdős and Ernst Gabor Straus, Some number theoretic results . . . . . . . . . . . 635
  21. George Rudolph Gordh, Jr., Monotone decompositions of irreducible Hausdorff continua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
  22. Darald Joe Hartfiel, The matrix equation AX B = X . . . . . . . . . . . . . . . . . . . . . . . . . 659
  23. James Howard Hedlund, Expansive automorphisms of Banach spaces. II . . . . . . 671
  24. I. Martin (Irving) Isaacs, The p-parts of character degrees in p-solvable groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
  25. Donald Glen Johnson, Rings of quotients of -algebras . . . . . . . . . . . . . . . . . . . . . 693
  26. Norman Lloyd Johnson, Transition planes constructed from semifield planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
  27. Anne Bramble Searle Koehler, Quasi-projective and quasi-injective modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
  28. James J. Kuzmanovich, Completions of Dedekind prime rings as second endomorphism rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
  29. B. T. Y. Kwee, On generalized translated quasi-Cesàro summability . . . . . . . . . . 731
  30. Yves A. Lequain, Differential simplicity and complete integral closure . . . . . . . . 741
  31. Mordechai Lewin, On nonnegative matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
  32. Kevin Mor McCrimmon, Speciality of quadratic Jordan algebras . . . . . . . . . . . . 761
  33. Hussain Sayid Nur, Singular perturbations of differential equations in abstract spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
  34. D. K. Oates, A non-compact Krein-Milman theorem . . . . . . . . . . . . . . . . . . . . . . . . . 781
  35. Lavon Barry Page, Operators that commute with a unilateral shift on an invariant subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
  36. Helga Schirmer, Properties of fixed point sets on dendrites . . . . . . . . . . . . . . . . . . . 795
  37. Saharon Shelah, On the number of non-almost isomorphic models of T in a power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
  38. Robert Moffatt Stephenson Jr., Minimal first countable Hausdorff spaces . . . . . . 819
  39. Masamichi Takesaki, The quotient algebra of a finite von Neumann algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827
  40. Benjamin Baxter Wells, Jr., Interpolation in C( ) . . . . . . . . . . . . . . . . . . . . . . . . . . 833