Quasi-projective and quasi-injective modules
1971, Pacific Journal of Mathematics
https://doi.org/10.2140/PJM.1971.36.713Abstract
This paper contains results which are needed to prove a decomposition theorem for quasi-projective modules over left perfect rings. An iϋ-module M is called quasi-projective if and only if for every jβ-module A, every jβ-epimorphism q:M-~+ A, and every iϋ-homomorphism f:M->A, there is an f eΈτιά R {M) such that the diagram M M-^A >0 commutes, that is, qof = /. An i?-module M is called quasi-injective if and only if for every iϋ-module A, every jB-monomorphism j: A->M, and jβ-homomorphism /: A-+M, there is an /' e Έnd R (M) such that the diagram 0 >A- !-*M
References (40)
- G. Azumaya, Corrections and supplementaries to my paper concerning [Krullr Remak-Schmidf s theorem, Nagoya Math. J. 1 (1950), 117-124.
- A duality theory for injective modules, Amer. J. Math. 81 (1959), 249-278.
- 1 Completely faithful modules and self-injective rings, Nagoya Math. J. 27 (1966), 697-708.
- H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
- f The Morita theorems, mimeographed notes.
- S. Eilenberg, Homological dimension and syzygies, Ann. of Math. 64 (1956), 328-336.
- M. Harada, Note on quasi-injective modules, Osaka J. Math. 2 (1965). 351-356.
- N. Jacobson, Structure of rings, Amer. Math. Soc, Providence, 1964.
- R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math Soc, 36 (1961), 260-268.
- J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Co., Toronto, 1966.
- E. Matlis, Injective modules over Noetherian rings, Pacific J. Math., 8 (1958), 511-528.
- L. E. T. Wu and J. P. Jans, On quasi-projectives, 111. J. Math. 11 (1967), 439-447. Received August 19, 1968. This paper is part of the author's thesis at Indiana University and was partially supported by NSF Grant No. GP5799 and an NSF Traineeship. Pacific Journal of Mathematics Vol. 36, No. 3
- BadMonth, 1971
- E. M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces of Ꮿ C (X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
- Joby Milo Anthony, Topologies for quotient fields of commutative integral domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
- V. Balakrishnan, G. Sankaranarayanan and C. Suyambulingom, Ordered cycle lengths in a random permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
- Victor Allen Belfi, Nontangential homotopy equivalences. . . . . . . . . . . . . . . . . . . . 615
- Jane Maxwell Day, Compact semigroups with square roots . . . . . . . . . . . . . . . . . . 623
- Norman Henry Eggert, Jr., Quasi regular groups of finite commutative nilpotent algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
- Paul Erdős and Ernst Gabor Straus, Some number theoretic results . . . . . . . . . . . 635
- George Rudolph Gordh, Jr., Monotone decompositions of irreducible Hausdorff continua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
- Darald Joe Hartfiel, The matrix equation AX B = X . . . . . . . . . . . . . . . . . . . . . . . . . 659
- James Howard Hedlund, Expansive automorphisms of Banach spaces. II . . . . . . 671
- I. Martin (Irving) Isaacs, The p-parts of character degrees in p-solvable groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
- Donald Glen Johnson, Rings of quotients of -algebras . . . . . . . . . . . . . . . . . . . . . 693
- Norman Lloyd Johnson, Transition planes constructed from semifield planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
- Anne Bramble Searle Koehler, Quasi-projective and quasi-injective modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
- James J. Kuzmanovich, Completions of Dedekind prime rings as second endomorphism rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
- B. T. Y. Kwee, On generalized translated quasi-Cesàro summability . . . . . . . . . . 731
- Yves A. Lequain, Differential simplicity and complete integral closure . . . . . . . . 741
- Mordechai Lewin, On nonnegative matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
- Kevin Mor McCrimmon, Speciality of quadratic Jordan algebras . . . . . . . . . . . . 761
- Hussain Sayid Nur, Singular perturbations of differential equations in abstract spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
- D. K. Oates, A non-compact Krein-Milman theorem . . . . . . . . . . . . . . . . . . . . . . . . . 781
- Lavon Barry Page, Operators that commute with a unilateral shift on an invariant subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
- Helga Schirmer, Properties of fixed point sets on dendrites . . . . . . . . . . . . . . . . . . . 795
- Saharon Shelah, On the number of non-almost isomorphic models of T in a power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
- Robert Moffatt Stephenson Jr., Minimal first countable Hausdorff spaces . . . . . . 819
- Masamichi Takesaki, The quotient algebra of a finite von Neumann algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827
- Benjamin Baxter Wells, Jr., Interpolation in C( ) . . . . . . . . . . . . . . . . . . . . . . . . . . 833