Academia.eduAcademia.edu

Outline

Is Turbulent Mixing a Self-Convolution Process?

2008, Physical Review Letters

https://doi.org/10.1103/PHYSREVLETT.100.234506

Abstract

Experimental results for the evolution of the probability distribution function (PDF) of a scalar mixed by a turbulence flow in a channel are presented. The sequence of PDF from an initial skewed distribution to a sharp Gaussian is found to be non universal. The route toward homogeneization depends on the ratio between the cross sections of the dye injector and the channel. In link with this observation, advantages, shortcomings and applicability of models for the PDF evolution based on a self-convolution mechanisms are discussed.

References (17)

  1. S.B. Pope, Prog. Energy Combust. Sci. 11 (1985).
  2. E. O'Brien, in turbulent reacting flows (London, Aca- demic, 1980), pp. 185-203.
  3. S.B. Pope, Theor. Comput. Fluid Dyn. 2, 255 (1991).
  4. R. O. Fox, Phys. Fluids A 4, 1230 (1992).
  5. S. Heinz, Flow, Turb. Combust. 70, 115 (2003).
  6. V. Sabel'Nikov, M. Gorokhovsky, N. Baricault, Combust. Theo. Modelling 10, 155 (2006).
  7. D. W. Meyer, P. Jenny, Phys. Fluids 19, 028101 (2007).
  8. R. L. Curl, AIChE 9, 175 (1963).
  9. S. B. Pope, Prog. Energy Combust. Sci. 28, 131 (1982).
  10. C. Dopazo, Phys. Fluids 22, 010020 (1979).
  11. E. Villermaux, J. Duplat, Phys. Rev. Lett. 91, 184501 (2003).
  12. A. Venaille, J. Sommeria, Phys. Fluids 19, 028101 (2007).
  13. Jayesh, Z. Warhaft, Phys. Fluids A 4, 2295 (1992).
  14. H. Rehab, R.A. Antonia, L. Djenidi, Exp. fluids 31, 186 (2001).
  15. A. Pumir, B. Shraiman, E. D. Siggia, Phys. Rev. Lett. 66, 2984 (1991).
  16. H. Schlichting, Boundary Layer Theory (New York : McGraw-Hill, 1955).
  17. J.O. Hinze, turbulence (New York : McGraw-Hill, 1975).