Academia.eduAcademia.edu

Outline

Symmetry and Scaling of Turbulent Mixing

1996, Physical Review Letters

https://doi.org/10.1103/PHYSREVLETT.77.2463

Abstract

The stationary condition (Hopf equation) for the (n+1) point correlation function of a passive scalar advected by turbulent flow is argued to have an approximate SL(n, R) symmetry which provides a starting point for the perturbative treatment of less symmetric terms. The large scale anisotropy is found to be a relevant field, in contradiction with Kolmogorov phenomenology, but in agreement with the large scalar skewness observed in shear flows. Exponents are not universal, yet quantitative predictions for experiments to test the SL(n, R) symmetry can be formulated in terms of the correlation functions.

References (14)

  1. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, MIT press, (1975).
  2. A. Antonia, E. J. Hopfinger, Y. Gagne, and F. Anselmet, Phys. Rev. A30, 2704 (1984), D. R. Dowling and P. E. Dimotakis, J. Fluids Mech. 218, 109 (1990).
  3. P. G. Mestayer, J. Fluid Mech. 125, 475 (1982), K. R. Sreenivasan, Proc. Roy. Soc. Lond., A434 165 (1991).
  4. M. Holzer and E. Siggia, Phys. Fluids, 6, 1820 (1994), A. Pumir, Phys. Fluids, 6, 2118 (1994), C. Tong and Warhaft, Z., Phys. Fluids 6, 1820 (1994).
  5. R. H. Kraichnan, Phys. Rev. Lett., 72, 1016 (1994), S. Chen and R. H. Kraichnan private communication.
  6. B. I. Shraiman and E. D. Siggia, C.R. Acad. Sci. Paris 321, 279 (1995).
  7. M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. E 51, 5609 (1995).
  8. K. Gawedzki and A. Kupiainen, Phys. Rev. Lett. 75, 3834 (1995).
  9. B. I. Shraiman and E. D. Siggia, Phys. Rev. E 49, 2912 (1994).
  10. R. H. Kraichnan, Phys. Fluids 11, 945 (1968).
  11. In order to match the inertial range Hopf solutions to those in the dissipation range all the zero modes are required. In particular those with negative λ = -|λ d | then appear in the inertial range as terms scaling as (η/R g ) |λ d | where η is the Kolmogorov scale; down by factors of R but capable of influencing inertial range experiments if |λ d | ≪ 1.
  12. The perturbation theory for Laplacian damping and d = 2 has been done for gen- eral N: λ N = (-1.13 + 1.27N ) α/(N -1) for N even and λ N -1 = 1.89N α/(1 + 6.00N -2 + 95.35N -4 ) for N odd. In both cases the expressions are fits of a complicated analytic formula good to 1%.
  13. Pertubation around the white noise limit has been shown to give nonuniversial results by M. Chertkov, G. Falkovich, and V. Lebedev (preprint).
  14. A. Pumir and B. I. Shraiman, Phys. Rev. Lett. 75, 3114 (1995).