Unpredictable tunneling in a retarded bistable potential
2023, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.2312.11499Abstract
We have studied the rich dynamics of a damped particle inside an external double-well potential under the influence of state-dependent time-delayed feedback. In certain regions of the parameter space, we observe multistability with the existence of two different attractors (limit cycle or strange attractor) with well separated mean Lyapunov energies forming a two-level system. Bifurcation analysis reveals that, as the effects of the time-delay feedback are enhanced, chaotic transitions emerge between the two wells of the double-well potential for the attractor corresponding to the fundamental energy level. By computing the residence time distributions and the scaling laws near the onset of chaotic transitions, we rationalize this apparent tunneling-like effect in terms of the crisis-induced intermittency phenomenon. Further, we investigate the first passage times in this regime and observe the appearance of a Cantor-like fractal set in the initial history space, a characteristic feature of hyperbolic chaotic scattering. The non-integer value of the uncertainty dimension indicates that the residence time inside each well is unpredictable. Finally, we demonstrate the robustness of this tunneling intermittency as a function of the memory parameter by calculating the largest Lyapunov exponent.
References (50)
- Couder, Y., Protière, S., Fort, E., Boudaoud, A. (2005). Dynamical phenomena: walking and orbiting droplets. Nature 437, 208.
- Protière, S., Boudaoud, A., Couder, Y. (2006). Particle-wave association on a fluid interface. J. Fluid Mech. 544, 85-108.
- Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J., Couder, Y. (2010). Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. 107, 17515-17520.
- Couder, Y., Fort, E. (2006). Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101.
- Andersen, A., Madsen, J., Reichelt, C., Rosenlund, Ahl, S., Lautrup, B., Ellegaard, C., Levin- sen, M.T., Bohr, T. (2015). Double-slit experiment with single wave-driven particles and its relation to quantum mechanics. Phys. Rev. E 92, 013006.
- Pucci, G., Harris, D., Faria, L., Bush, J. (2018). Walking droplets interacting with single and double slits. J. Fluid Mech. 835, 1136-1156.
- Eddi, A., Fort, E., Moisy, F., Couder, Y. (2009). Unpredictable tunneling of a classical wave- particle association. Phys. Rev. Lett. 102, 240401.
- Tadrist, L., Gilet, T., Schlagheck, P., Bush, J.W.M. (2020). Predictability in a hydrodynamic pilot-wave system: Resolution of walker tunneling, Phys. Rev. E, 102, 013104.
- Papatryfonos, K., Vervoort, L., Nachbin, A., Matthieu, L., Bush, J. W. M. (2022). A platform for investigating Bell correlations in pilot-wave hydrodynamics. arXiv:2208.08940 [physics.flu- dyn]
- Valani, R. N., Slim, A. C., Simula, T. (2018). Hong-Ou-Mandel-like two-droplet correlations. Chaos, 28, 096104.
- Oza, A. U., Rosales, R. R., Bush, J. W. (2013). A trajectory equation for walking droplets: hydrodynamic pilot-wave theory. J. Fluid Mech. 737, 552-570.
- Turton S. E., Couchman, M. M. P., Bush, J. W. M. (2018). A review of theoretical modeling of walking droplets: toward a generalized pilot-wave framework. Chaos 28, 096111.
- de la Peña, L., Cetto, A. M., Valdés-Hernandes, A. (2014). The zero-point field and the emergence of the quantum. Int. J. Mod. Phys. E. 23, 1450049.
- Bohr, N. (1913). I. On the constitution of atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 26, 1-25.
- Schrödinger, E. (1926). Quantisierung als Eigenwertproblem. Ann. Phys. 386, 109-139.
- López, A. G. (2020). On an electrodynamic origin of quantum fluctuations. Nonlinear Dyn. 102, 621-634.
- López, A. G. (2021). Stability analysis of the uniform motion of electrodynamic bodies. Phys. Scr. 96, 015506.
- Liénard, A. (1898). Champ électrique et magnétique produit par une charge concentrée en un point et animée d'un mouvement quelconque. L'éclairage electrique 16, 5-14.
- Raju, C. K. (2004). The electrodynamic 2-body problem and the origin of quantum mechanics. Found. Phys. 34, 937-963.
- Silva, R. R., Figueiredo, A. (2023). A new method for finding global solutions to Synge's electromagnetic problem. J. Phys. A: Math. Theor. 56, 455204.
- López, A. G. (2023). Orbit quantization in a retarded harmonic oscillator. Chaos, Solit. Frac- tals, 170, 113412.
- Schell, M., Ross, J. (1986). Effects of time delay in rate processes. J. Chem. Phys. 85, 6489- 6503.
- Mackey, M. C., Glass, L. (1977). Oscillation and chaos in physiological control systems. Science 197, 287-289.
- Hansen, M., Protachevicz, P. R., Iarosz, K. C., Caldas, I. L., Batista, A. M., Macau, E. E. N. (2022). The effect of time delay for synchronisation suppression in neuronal networks. Chaos, Solitons & Fractals 164, 112690.
- Ferrell Jr, J. E., Tsai, T. Y. C., Yang, Q. (2011). Modeling the cell cycle: Why do certain circuits oscillate? Cell 144, 874-885.
- Boutle, I., Taylor, R. H., Römer, R. A. (2007). El Niño and the delayed action oscillator. Am. J. Phys. 75, 15-24.
- Salpeter, E. E., Salpeter, S. R. (1998). Mathematical model for the epidemiology of tuberculo- sis, with estimates of the reproductive number and infection-delay function. Am. J. Epidemiol. 147, 398-406.
- Kalecki, M. (1935). A macrodynamic theory of business cycles. Econometrica 3, 327-344.
- Insperger, T., Stépán, G. Turi, J. (2007). State-dependent delay in regenerative turning pro- cesses. Nonlinear Dyn. 47, 275-283.
- Martínez-Llinàs, J., Porte, X., Soriano, M. et al. (2015). Dynamical properties induced by state-dependent delays in photonic systems. Nat. Commun. 6, 7425.
- Müller, D., Otto, A., Radons, G. (2018). Laminar chaos. Phys. Rev. Lett. 120, 084102.
- Jeevarathinam, C., Rajasekar, S. (2015). Vibrational resonance in the Duffing oscillator with state-dependent time-delay. IJARPS 2, 1-8.
- Hund, F. (1927). Zur Deutung der Molekelspektren. I. Z. Physik 40, 742-764.
- Jenkins, A. (2013). Self-oscillation. Phys. Rep. 525, 167-222.
- Lakshmanan, M., Senthilkumar, D. V. (2011). Dynamics of nonlinear time-delay systems. Springer Science & Business Media. pp. 37-41.
- Shampine, L. F. (2005) Solving ODEs and DDEs with residual control. App. Num. Math. 52, 113-127.
- López, Á. G., Benito, F., Sabuco, J., Delgado-Bonal, A. (2023). The thermodynamic efficiency of the Lorenz system. Chaos, Solit, Fractals. 172.
- Grebogi, C., Ott, E. Romeiras, F., Yorke, J. A. (1987). Critical exponents for crisis-induced intermittency. Phys. Rev. A 36, 5365.
- Pomeau, Y., Manneville, P. (1980). Intermittent transition to turbulence in dissipative dy- namical systems. Commun. Math. Phys. 74, 189-197.
- Valani, R. N. (2022). Lorenz-like systems emerging from an integro-differential trajectory equation of a one-dimensional wave-particle entity. Chaos 32, 023129.
- Grebogi, C., McDonald, S. W., Ott, E., Yorke, J. A. (1983). Final state sensitivity: An obstruction to predictability. Phys. Letters 99, 415-418.
- Lau, Yu-T, Finn, J. M. Finn. (1992). Dynamics of a three-dimensional incompressible flow with stagnation points. Physica D: Nonlinear Phenomena, 57, 283-310.
- Elhadj, Z. Sprott, J. C. (2008). A minimal 2-D quadradtic map with quasi-periodic route to chaos. Int. J. Bif. Chaos 18, 1567-1577.
- Fernández, D. S., López, Á. G., Seoane, J. M., Sanjuán, M. A. F. (2020). Transient chaos under coordinate transformations in relativistic systems. Phys. Rev. E, 101, 062212.
- Kramers, H. A. (1940). Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7, 284-304.
- Banerjee, S., Yorke, J. A., Grebogi, C. (1998). Robust chaos. Phys. Rev. Lett. 80, 3049.
- Rosenstein, M. T., Collins, J. J., De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D: Nonlinear Phenom. 65, 117-134.
- Coccolo, M., Zhu, B., Sanjuán, M.A.F., Sanz-Serna, J. M. (2018). Bogdanov-Takens resonance in time-delayed systems. Nonlinear Dyn. 91, 1939-1947.
- Valani, R. N., Slim, A. C. (2018). Pilot-wave dynamics of two identical, in-phase bouncing droplets. Chaos, 28, 1-15.
- Gurney, R. W., Condon, E. U. (1928). Quantum mechanics and radioactive disintegration. Nature, 122, 439-440.