Academia.eduAcademia.edu

Outline

Complex Periodic Orbits and Tunnelling in Chaotic Potentials

1996, HAL (Le Centre pour la Communication Scientifique Directe)

Abstract

We derive a trace formula for the splitting-weighted density of states suitable for chaotic potentials with isolated symmetric wells. This formula is based on complex orbits which tunnel through classically forbidden barriers. The theory is applicable whenever the tunnelling is dominated by isolated orbits, a situation which applies to chaotic systems but also to certain near-integrable ones. It is used to analyse a specific two-dimensional potential with chaotic dynamics. Mean behaviour of the splittings is predicted by an orbit with imaginary action. Oscillations around this mean are obtained from a collection of related orbits whose actions have nonzero real part.

References (28)

  1. W. A. Lin and L. E. Ballentine, Phys. Rev. Lett. 65, 2927 (1990);
  2. S. Tomsovic and D. Ullmo, Phys. Rev. E 50, 145 (1994).
  3. O. Bohigas, S. Tomsovic and D. Ullmo, Phys. Rep. 223, 45 (1993);
  4. Phys. Rev. Lett. 64, 1479; O. Bohigas et. al., Nucl. Phys. A560, 197 (1993);
  5. E. Doron and S. D. Frischat, Phys. Rev. Lett. 75, 3661 (1995).
  6. CHAOS focus issue on periodic orbit theory, CHAOS 2 (1992), P. Cvitanović, I. Percival and A. Wirzba, eds.
  7. T. Banks, C. M. Bender and Tai T. Wu, Phys. Rev. D 8, 3346 (1973);
  8. T. Banks and C. M. Bender, Phys. Rev. D 8, 3366 (1973).
  9. W. H. Miller, J. Phys. Chem. 83, 960 (1979).
  10. J. M. Robbins, S. C. Creagh and R. G. Littlejohn, Phys. Rev. A 39, 2838 (1989);
  11. Phys. Rev. A 41, 6052 (1990).
  12. P. Leboeuf and A. Mouchet, Phys. Rev. Lett. 73, 1360 (1994).
  13. A. Shudo and K. S. Ikeda, Phys. Rev. Lett. 74, 862 (1995).
  14. J. Robbins, Phys. Rev. A 40, 2128 (1989).
  15. S. C. Creagh and N. D. Whelan (unpublished).
  16. S. C. Creagh, J. M. Robbins and R. G. Littlejohn, Phys. Rev. A 42, 1907 (1990);
  17. J. M. Robbins, Nonlinearity 4, 343 (1991).
  18. R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation (New York: Academic, 1973).
  19. B. Lauritzen, Phys. Rev. A 43, 603 (1991).
  20. M. Kús, F. Haake and D. Delande, Phys. Rev. Lett. 71, 2167 (1993);
  21. M. Sieber (unpublished).
  22. Miller, J. Chem. Phys. 63, 996 (1975);
  23. P. J. Richens J. Phys. A 15, 2101 (1982);
  24. A. Voros; J. Phys. A 21, 685 (1988).
  25. P. B. Wilkinson et al, Nature 380, 608 (1996);
  26. L. Lead- beater, F. W. Sheard and L. Eaves, Semicond. Sci. Tech- nol. 6, 1021 (1991).
  27. R. A. Jalabert, A. D. Stone and Y. Alhassid, Phys. Rev. Lett. 68, 3468 (1992);
  28. J. A. Folk et. al., Phys. Rev. Lett. 76, 1699 (1996).