Academia.eduAcademia.edu

Outline

Observational constraints of diffusive dark-fluid cosmology

2023, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.2301.02913

Abstract

In this work, we consider an interacting dark-fluid cosmological model in which energy exchange between dark matter and dark energy occurs through diffusion. After solving the background expansion history for a late-time universe, we attempt to constrain the cosmological parameters by comparing simulated values of the model against Supernovae Type 1A data. We consider four different cases and compare them against the ΛCDM model as the "true model". Our results show that the diffusive model in which dark energy flows to dark matter is the most likely alternative to ΛCDM model. This model is not only in line with Planck 2018 observational results but can also give a potential explanation to the so-called Hubble tension.

References (33)

  1. Adam G Riess, Alexei V Filippenko, Peter Challis, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 116(3):1009, 1998.
  2. Saul Perlmutter et al. Supernovae, dark energy, and the accelerating universe. Physics today, 56(4):53- 62, 2003.
  3. Subhayan Maity, Pritikana Bhandari, and Subenoy Chakraborty. Universe consisting of diffusive dark fluids: thermodynamics and stability analysis. The European Physical Journal C, 79(1):1-8, 2019.
  4. Max Tegmark, Michael A Strauss, Michael R Blanton, et al. Cosmological parameters from sdss and wmap. Physical review D, 69(10):103501, 2004.
  5. Fritz Zwicky. On the masses of nebulae and of clusters of nebulae. The Astrophysical Journal, 86:217, 1937.
  6. Yoshiaki Sofue and Vera Rubin. Rotation curves of spiral galaxies. Annual Review of Astronomy and Astrophysics, 39(1):137-174, 2001.
  7. Lars Bergström. Dark matter candidates. New Journal of Physics, 11(10):105006, 2009.
  8. Sergio Colafrancesco, S Profumo, and Piero Ullio. Multi-frequency analysis of neutralino dark matter annihilations in the coma cluster. Astronomy & Astrophysics, 455(1):21-43, 2006.
  9. Remudin Reshid Mekuria, Sergio Colafrancesco, Andreas Faltenbacher, and Paolo Marchegiani. Multi- wavelength emissions from dark matter annihilation processes in galaxy clusters using cosmological simulations. PoS, HEASA 2016:009, 2017.
  10. Remudin Reshid Mekuria. Multi-wavelength emissions from dark matter annihilation processes in galaxy clusters using cosmological simulations. PhD thesis, University of the Witwatersrand, 2017.
  11. Mordehai Milgrom. A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis. The Astrophysical Journal, 270:365-370, 1983.
  12. Sean M Carroll. The cosmological constant. Living reviews in relativity, 4(1):1-56, 2001.
  13. Steven Weinberg. The cosmological constant problem. Reviews of modern physics, 61(1):1, 1989.
  14. Paul J Steinhardt. A quintessential introduction to dark energy. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1812):2497-2513, 2003.
  15. Hermano ES Velten, RF Vom Marttens, and Winifried Zimdahl. Aspects of the cosmological "coinci- dence problem". The European Physical Journal C, 74(11):1-8, 2014.
  16. Emmanuel N Saridakis, Ruth Lazkoz, Vincenzo Salzano, et al. Modified Gravity and Cosmology. Springer, 2021.
  17. Salvatore Capozziello and Mariafelicia De Laurentis. Extended theories of gravity. Physics Reports, 509(4-5):167-321, 2011.
  18. Timothy Clifton, Pedro G Ferreira, Antonio Padilla, and Constantinos Skordis. Modified gravity and cosmology. Physics reports, 513(1-3):1-189, 2012.
  19. Ivan Debono and George F Smoot. General relativity and cosmology: unsolved questions and future directions. Universe, 2(4):23, 2016.
  20. Phillip JE Peebles. Evolution of the cosmological constant. Nature, 398(6722):25-26, 1999.
  21. PJE Peebles and Bharat Ratra. Cosmology with a time-variable cosmological'constant'. The Astrophys- ical Journal, 325:L17-L20, 1988.
  22. Martin Reuter and Christof Wetterich. Time evolution of the cosmological "constant". Physics Letters B, 188(1):38-43, 1987.
  23. Krzysztof Bolejko, Marie-Noëlle Célérier, and Andrzej Krasiński. Inhomogeneous cosmological models: exact solutions and their applications. Classical and Quantum Gravity, 28(16):164002, 2011.
  24. Andrzej Krasinski. Inhomogeneous cosmological models. 1997.
  25. Yuri L Bolotin, Alexander Kostenko, Oleg A Lemets, and Danylo A Yerokhin. Cosmological evolution with interaction between dark energy and dark matter. International Journal of Modern Physics D, 24(03):1530007, 2015.
  26. Weiqiang Yang and Lixin Xu. Cosmological constraints on interacting dark energy with redshift-space distortion after planck data. Physical Review D, 89(8):083517, 2014.
  27. Tao Yang, Zong-Kuan Guo, and Rong-Gen Cai. Reconstructing the interaction between dark energy and dark matter using gaussian processes. Physical Review D, 91(12):123533, 2015.
  28. Winfried Zimdahl. Interacting dark energy and cosmological equations of state. International Journal of Modern Physics D, 14(12):2319-2325, 2005.
  29. MA van der Westhuizen and A Abebe. Dark coupling: cosmological implications of interacting dark energy and dark matter fluids. Proceedings of the 65th Annual Conference of the South African Institute of Physics (SAIP 2021).
  30. MA van der Westhuizen. Dark interactions beyond the LambdaCDM model. MSc dissertation, North- West University, 2022.
  31. Thabo Mahlatji. Diffusive dark fluids: thermodynamics and cosmological evolution. Honours research report, North-West University, 2021.
  32. Renier Hough, Shambel Sahlu, Heba Sami, Maye Elmardi, Anna-Mia Swart, and Amare Abebe. Con- fronting the Chaplygin gas with data: background and perturbed cosmic dynamics. arXiv preprint arXiv:2112.11695, 2021.
  33. Nabila Aghanim, Yashar Akrami, Mark Ashdown, et al. Planck 2018 results-vi. cosmological parameters. Astronomy & Astrophysics, 641:A6, 2020.