Cosmographic constraints and cosmic fluids
Galaxies 2013, 1(3), 216-260; doi:10.3390/galaxies1030216
https://doi.org/10.3390/GALAXIES1030216Abstract
The problem of reproducing dark energy effects is reviewed here with particular interest devoted to cosmography. We summarize some of the most relevant cosmological models, based on the assumption that the corresponding barotropic equations of state evolve as the universe expands, giving rise to the accelerated expansion. We describe in detail the ΛCDM (Λ-Cold Dark Matter) and ωCDM models, considering also some specific examples, e.g., Chevallier–Polarsky–Linder, the Chaplygin gas and the Dvali–Gabadadze–Porrati cosmological model. Finally, we consider the cosmological consequences of f(R) and f(T) gravities and their impact on the framework of cosmography. Keeping these considerations in mind, we point out the model-independent procedure related to cosmography, showing how to match the series of cosmological observables to the free parameters of each model. We critically discuss the role played by cosmography, as a selection criterion to check whether a particular model passes or does not present cosmological constraints. In so doing, we find out cosmological bounds by fitting the luminosity distance expansion of the redshift, z, adopting the recent Union 2.1 dataset of supernovae, combined with the baryonic acoustic oscillation and the cosmic microwave background measurements. We perform cosmographic analyses, imposing different priors on the Hubble rate present value. In addition, we compare our results with recent PLANCK limits, showing that the ΛCDM and ωCDM models seem to be the favorite with respect to other dark energy models. However, we show that cosmographic constraints on f(R) and f(T) cannot discriminate between extensions of General Relativity and dark energy models, leading to a disadvantageous degeneracy problem.
References (208)
- Stairs, I.H. Testing general relativity with pulsar timing. Liv. Rev. Relativ. 2003, 6, 5, doi:10.12942/lrr-2003-5.
- Gair, J.R.; Vallisneri, M.; Larson, S.L.; Baker, J.G. Testing general relativity with low-frequency, space-based gravitational-wave detectors. Living Rev. Relativ. 2013, 16, doi:10.12942/lrr-2013-7.
- Will, C.M. The confrontation between general relativity and experiment. Living Rev. Relativ. 2006, 9, 1-100.
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiattia, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronys. J. 1998, 116, 1009-1038.
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565-586.
- Knop, R.A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M.S.; Conley, A.; Deustua, S.E.; Doi, M.; Ellis, R.; et al. New constraints on Ω M , Ω Λ , and w from an independent set of eleven high-redshift supernovae observed with HST. Astrophys. J. 2003, 598, 102-137.
- Tonry, J.L.; Schmidt, B.P.; Barris, B.; Candia, P.; Challis, P.; Clocchiatti, A.; Coil, A.L.; Filippenko, A.V.; Garnavich, P.; Hogan, C.; et al. Cosmological results from high-z supernovae. Astrophys. J. 2003, 594, 1-24.
- Barris, B.J.; Tonry, J.L.; Blondin, S.; Challis, P.; Chornock, R.; Clocchiatti, A.; Filippenko, A.V.; Garnavich, P.; Holland, S.T.; Jha, S.; et al. Twenty-three high-redshift supernovae from the Institute for Astronomy Deep Survey: Doubling the supernova sample at z > 0.7. Astrophys. J. 2004, 602, 571-594.
- Riess A.G.; Strolger, L.-G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia supernova discoveries at z > 1 from the Hubble space telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 2004, 607, 665-687.
- De Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Coble, K.; Crill, B.P.; De Gasperis, G.; Farese, P.C.; et al. A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 2000, 404, 955-959.
- Stompor, R.; Abroe, M.; Ade, P.; Balbi, A.; Barbosa, D.; Bock, J.; Borrill, J.; Boscaleri, A.; De Bernardis, P.; Ferreira, P.G.; et al. Cosmological implications of the MAXIMA-1 high-resolution cosmic microwave background anisotropy measurement. Astrophys. J. 2001, 561, 7-10.
- Dodelson, S.; Narayanan, V.K.; Tegmark, M.; Scranton, R.; Budavàri, T.; Connolly, A.; Csabai, I.; Eisenstein, D.; Frieman, J.A.; Gunn, J.E.; et al. The Three-dimensional power spectrum from angular clustering of galaxies in early sloan digital sky survey data. Astrophys. J. 2002, 572, 140-156.
- Percival, W.J.; Sutherland, W.; Peacock, J.A.; Baugh, C.M.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Colless, M.; Collins, C.; et al. Parameter constraints for flat cosmologies from CMB and 2dFGRS power spectra. Mon. Not. R. Astron. Soc. 2002, 337, 1068-1080.
- Szalay, A.S.; Jain, B.; Matsubara, T.; Scranton, R.; Vogeley, M.S.; Connolly, A.; Dodelson, S.; Eisenstein, D.; Frieman, J.A.; Gunn, J.E.; et al. Karhunen-Loève Estimation of the power spectrum parameters from the angular distribution of galaxies in early Sloan digital sky survey data. Astrophys. J. 2003, 591, 1-11.
- Hawkins, E.; Maddox, S.; Cole, S.; Lahav, O.; Madgwick, D.S.; Norberg, P.; Peacock, J.A.; Baldry, I.K.; Baugh, C.M.; Bland-Hawthorn, J.; et al. The 2dF galaxy redshift survey: Correlation functions, peculiar velocities and the matter density of the universe. Mon. Not. R. Astrono. Soc. 2003, 346, 78-96.
- McDonald, P.; Seljak, U.; Burles, S.; Schlegel, D.J.; Weinberg, D.H.; Shih, D.; Schaye, J.; Schneider, D.P.; Brinkmann, J.; Brunner, R.J.; et al. The Ly-α forest power spectrum from the Sloan digital sky survey. Astrophys. J. 2006, 163, 80-109.
- Carroll, S.M. The cosmological constant. Living Rev. Relativ. 2001, 3, doi:10.12942/lrr-2001-1.
- Amendola, L.; Appleby, S.; Bacon, D.; Baker, T.; Baldi, M.; Bartolo, N.; Blanchard, A.; Bonvin, C.; Borgani, S.; Branchini, E.; et al. Cosmology and fundamental physics with the euclid satellite. Living Rev. Relativ. 2013, 16, doi:10.12942/lrr-2013-6.
- Fujii, Y. Origin of the gravitational constant and particle masses in scale invariant scalar-tensor theory. Phys. Rev. D 1982, 26, 2580-2588.
- Wetterich, C. Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 1988, 302, 668-696.
- Ratra, B.; Peebles, J. Cosmological consequences of rolling homogeneus scalar field. Phys. Rev. D 1988, 37, 3406-3427.
- Chiba, T.; Sugiyama, N.; Nakamura, T. Cosmology with x-matter. Mon. Not. R. Astrono. Soc. 1997, 289, 5-9.
- Ferreira, P.G.; Joyce, M. Structure formation with a self-tuning scalar field. Phys. Rev. Lett. 1997, 79, 4740-4743.
- Alam, U.; Sahni, V.; Starobinsky, A.A. Reconstructing cosmological matter perturbations using standard candles and rulers. Astrophys. J. 2009, 704, 1086-1097.
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: Hoboken, NJ, USA, 1972.
- Ferreira, P.G.; Joyce, M. Cosmology with a primordial scaling field. Phys. Rev. D 1998, 58, doi:10.1103/PhysRevD.58.023503.
- Copeland, E.J.; Liddle, A.R.; Wands, D. Exponential potentials and cosmological scaling solutions. Phys. Rev. D 1998, 57, 4686-4690.
- Zlatev, I.; Wang, L.M.; Steinhardt, P.J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 896-899.
- Kunz, M. Degeneracy between the dark components resulting from the fact that gravity only measures the total energy-momentum tensor. Phys. Rev. D 2009, 80, doi:10.1103/PhysRevD.80.123001.
- Vazquez, A.; Quevedo, H.; Sanchez, A. Thermodynamic systems as extremal hypersurfaces. J. Geom. Phys. 2010, 60, 1942-1949.
- Bravetti, A.; Luongo, O. Dark energy from geometrothermodynamics. ArXiv E-Prints, 2013, arXiv:1306.6758.
- Li, X.D.; Wang, S.; Huang, Q.G.; Zhang, X.; Li, M. Dark energy and fate of the Universe. Sci. China Phys. Mech. Astron. 2012, 55, 1330-1334.
- Carroll, S.M.; Press, W.H.; Turner, E.L. The cosmological model. Annu. Rev. Astron. Astrophys. 1992, 30, 499-542.
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008.
- Padmanabhan, T. Cosmological constant-The weight of the vacuum. Phys. Rep. 2003, 380, 235-320.
- Farooq, O.; Ratra, B. Hubble parameter measurement constraints on the cosmological deceleration-acceleration transition redshift. Astrophys. J. Lett. 2013, 766, L7, doi:10.1088/2041-8205/766/1/L7.
- Farooq, O.; Crandall, S.; Ratra, B. Binned Hubble parameter measurements and the cosmological deceleration-acceleration transition. Phys. Lett. B 2013, 726, 72-82.
- Sahni V.; Starobinski, A.A. The case for a positive cosmological Λ-term. Int. J. Mod. Phys. D 2000, 9, 373-443.
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1-23.
- Li, M.; Li, X.D.; Wang, S.; Wang, Y. Dark energy: A brief review. Front. Phys. 2013, 8, 828-846.
- Capozziello, S.; Luongo, O. Dark energy from entanglement entropy. Int. J. Theor. Phys. 2013, 52, 2698-2704.
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753-1936.
- Steinhardt, P.J.; Wang, L.M.; Zlatev, I. Cosmological tracking solutions. Phys. Rev. D 1999, 59, doi:10.1103/PhysRevD.59.123504.
- Corasaniti, P.S.; Copeland, E.J. Constraining the quintessence equation of state with SnIa data and CMB peaks. Phys. Rev. D 2002, 65, doi:10.1103/PhysRevD.65.043004.
- Sahni, V. Dark matter and dark energy. Lect. Notes Phys. 2004, 653, 141-179.
- Wang, Y.; Tegmark, M. New dark energy constraints from supernovae, microwave background, and Galaxy clustering. Phys. Rev. Lett. 2004, 92, doi:10.1103/PhysRevLett.92.241302.
- Wang, Y; Garnavich, P.M. Measuring time dependence of dark energy density from type Ia supernova data. Astrophys. J. 2001, 552, 445-451.
- Linder, E.V. Mapping the cosmological expansion. Rep. Prog. Phys. 2008, 71, doi:10.1088/0034-4885/71/5/056901.
- Chevallier, M.; Polarski, D. Accelerating Universes with scaling dark matter. Int. J. Mod. Phys. D. 2001, 10, 213-224.
- Linder, E.V. Exploring the expansion history of the Universe. Phys. Rev. Lett. 2003, 90, doi:10.1103/PhysRevLett.90.091301.
- Horava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, doi:10.1103/PhysRevD.79.084008 .
- Horava, P. Spectral dimension of the Universe in quantum gravity at a Lifshitz point. Phys. Rev. Lett. 2009, 102, doi:10.1103/PhysRevLett.102.161301.
- Shafieloo, A.; Linder, E.V. Cosmographic degeneracy. Phys. Rev. D 2011, 84, doi:10.1103/PhysRevD.84.063519.
- Rubano, C.; Scudellaro, P. Quintessence or phoenix? Gen. Relativ. Gravit. 2002, 34, 1931-1939.
- Cattoen, C.; Visser, M. Cosmographic Hubble fits to the supernova data. Phys. Rev. D 2008, 78, doi:10.1103/PhysRevD.78.063501.
- Rebolo, R.; Battye, R.A.; Carreira, P.; Cleary, K.; Davies, R.D.; Davis, R.J.; Dickinson, C.; Genova-Santos, R.; Grainge, K.; Gutirrez, C.M.; et al. Cosmological parameter estimation using Very Small Array data out to l = 1500. Mon. Not. R. Astron. Soc. 2004, 353, 747-759.
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. Astrophys. J. 2011, 192, doi:10.1088/0067-0049/192/2/18.
- Visser, M. General relativistic energy conditions: The Hubble expansion in the epoch of galaxy formation. Phys. Rev. D 1997, 56, doi:10.1103/PhysRevD.56.7578.
- Luongo, O. Cosmography with the Hubble parameter. Mod. Phys. Lett. A 2011, 26, 1459-1466.
- Aviles, A.; Gruber, C.; Luongo, O.; Quevedo, H. Cosmography and constraints on the equation of state of the Universe in various parametrizations. Phys. Rev. D 2012, 86, doi:10.1103/PhysRevD.86.123516.
- Stephani, H. Exact Solutions of Einstein's Field Equations; Cambridge University Press: Cambdrige, UK, 2003.
- Dayan, I.B.; Gasperini, M.; Marozzi, G.; Nugier, F.; Veneziano, G. Do stochastic inhomogeneities a dark-energy precision measurements? Phys. Rev. Lett. 2013, 110, doi:10.1103/PhysRevLett.110.021301.
- Capozziello, S.; Salzano, V. Cosmography and large scale structure by f (R) gravity: New results. Adv. Astron. 2009, 1, doi:10.1155/2009/217420.
- Bianchi, E.; Rovelli, C. Why all these prejudices against a constant? ArXiv E-Prints, 2010, arXiv:1002.3966.
- Chaplygin, S. On gas jets. Sci. Mem. Moscow Univ. Math. Phys. 1904, 21, 1-14.
- Armendariz-Picon, C.; Damour, T.; Mukhanov, V. k-Inflation. Phys. Lett. B 1999, 458, 209-218.
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically driven quintessence. Phys. Rev. D 2000, 62, doi:10.1103/PhysRevD.62.023511.
- Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P. J. Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 2000, 85, 4438-4441.
- Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P. J. Essentials of k-essence. Phys. Rev. D 2001, 63, doi:10.1103/PhysRevD.63.103510.
- Kamenshchik, A.; Moschella, U.; Pasquier, V. An alternative to quintessence. Phys. Lett. B 2001, 511, 265-268.
- Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 2002, 66, 043507:1-043507:5.
- Bilić, N.; Tupper, G.B.; Viollier, R.D. Unification of dark matter and dark energy: The inhomogeneous Chaplygin gas. Phys. Lett. B 2002, 535, 17-21.
- Carturan D.; Finelli, F. Cosmological effects of a class of fluid dark energy models. Phys. Rev. D 2003, 68, 103501:1-103501:5.
- Amendola, L.; Finelli, F.; Burigana, C.; Carturan, D. WMAP and the generalized Chaplygin gas. J. Cosmol. Astropart. Phys. 2003, 7, doi:10.1088/1475-7516/2003/07/005.
- Sandvik, H.B. ; Tegmark, M.; Zaldarriaga, M.; Waga, I. The end of unified dark matter? Phys. Rev. D 2004, 69, doi:10.1103/PhysRevD.69.123524.
- Scherrer, R.J. Purely Kinetic k Essence as Unified Dark Matter. Phys. Rev. Lett. 2004, 93, doi:10.1103/PhysRevLett.93.011301.
- Babichev, E. Global topological k-defects.
- Phys. Rev. D 2006, 74, doi:10.1103/PhysRevD.74.085004.
- Calcagni, G.; Liddle, A.R. Tachyon dark energy models: Dynamics and constraints. Phys. Rev. D 2006, 74, doi:10.1103/PhysRevD.74.043528.
- Li, H.; Guo, Z.-K.; Zhang, Y.-Z. Parametrization of k-ESSENCE and its Kinetic Term. Mod. Phys. Lett. A 2006, 21, 1683-1689.
- Fang, W.; Lu, H.Q.; Huang, Z.G. Cosmologies with a general non-canonical scalar field. Class. Quantum Gravity 2007, 24, 3799-3811.
- Bertacca, D.; Bartolo, N. The integrated SachsWolfe effect in unified dark matter scalar field cosmologies: An analytical approach. J. Cosmol. Astropart. Phys. 2007, 11, doi:10.1088/1475-7516/2007/11/026.
- De Putter, R.; Linder, E.V. Kinetic k-essence and quintessence. Astropart. Phys. 2007, 28, 263-272.
- Linder, E.V.; Scherrer, R.J. Aetherizing Lambda: Barotropic fluids as dark energy. Phys. Rev. D 2009, 80, doi:10.1103/PhysRevD.80.023008.
- Camera, S.; Bertacca, D.; Diaferio, A.; Bartolo, N.; Matarrese, S. Weak lensing signal in unified dark matter models. Mon. Not. R. Astron. Soc. 2009, 399, 1995-2003.
- Bertacca, D.; Bartolo, N.; Matarrese, S. Unified dark matter scalar field models. Adv. Astron. 2010, doi:10.1155/2010/904379.
- Camera, S.; Carbone, C.; Moscardini, L. Inclusive constraints on unified dark matter models from future large-scale surveys. J. Cosmol. Astropart. Phys. 2012, 03, doi:10.1088/1475-7516/2012/03/039.
- Maartens, R. Brane-world gravity. Living Rev. Relativ. 2004, 7, doi:10.12942/lrr-2004-7.
- Schäfer, B.M.; Koyama, K. Spherical collapse in modified gravity with the Birkhoff theorem. Mon. Not. R. Astron. Soc. 2008, 385, 411-422.
- Dvali, G.; Turner, M.S. Dark energy as a modification of the Friedmann Equation. ArXiv E-Prints, 2003, arXiv:astro-ph/0301510.
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559-606.
- Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relativ. Gravit. 2008, 40, 357-420.
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 2007, 74, 115-146.
- Capozziello, S.; De Laurentis, M.; Faraoni, V. A bird's eye view of f (R)-gravity. Open Astron. J. 2010, 3, 49-72.
- Capozziello, S.; De Laurentis, M. Extended theories of gravity. Phys. Rep. 2011, 509, 167-321.
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From f (R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59-144.
- Brans, C.H.; Dicke, R.H. Mach's principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925-935.
- Capozziello, S.; De Ritis, R.; Rubano, C.; Scudellaro, P. Noether symmetries in cosmology. Nuovo Cimento 1996, 4, 1-114.
- Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L. Effective Action in Quantum Gravity; IOP Publishing: Bristol, UK, 1992.
- Capozziello, S.; De Laurentis, M.; Francaviglia, M.; Mercadante, S. From dark energy and dark matter to dark metric. Found. Phys. 2009, 39, 1161-1176.
- Sciama, D.W. On the Origin of inertia. Mon. Not. R. Astron. Soc. 1953, 113, 34-42.
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982.
- Vilkovisky, G. Effective action in quantum gravity. Class. Quantum Gravity 1992, 9, 894-903.
- De Felice, A.; Tsujikawa, S. f (R) Theories. Living Rev. Relativ. 2010, 13, doi:10.12942/lrr-2010-3.
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99-102.
- Capozziello, S.; Fang, L.Z. Curvature quintessence. Int. J. Mod. Phys. D 2002, 11, 483-491.
- Capozziello, S.; Carloni, S.; Troisi, A. Quintessence without Scalar Fields. In Recent Research Developments in Astronomy and Astrophysics 1; Research Signpost: Trivandrum, India, 2003; 625-670.
- Capozziello, S.; Cardone, V.F.; Carloni, S.; Troisi, A. Curvature quintessence matched with observational data. Int. J. Mod. Phys. D 2003, 12, 1969-1982.
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 2004, 70, doi:10.1103/PhysRevD.70.043528.
- Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. D 2003, 68, doi:10.1103/PhysRevD.68.123512. .
- Dolgov, A.D.; Kawasaki, M. Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 2003, 573, 1-4.
- Olmo, G.J. The gravity lagrangian according to solar system experiments. Phys. Rev. Lett. 2005, 95, doi:10.1103/PhysRevLett.95.261102.
- Olmo, G.J. Post-Newtonian constraints on f (R) cosmologies in metric and Palatini formalism. Phys. Rev. D 2005, 72, doi:10.1103/PhysRevD.72.083505.
- Erickcek, A.L.; Smith, T.L.; Kamionkowski, M. Solar system tests do rule out 1/R gravity. Phys. Rev. D 2006, 74, doi:10.1103/PhysRevD.74.121501.
- Chiba, T.; Smith, T.L.; Erickcek, A.L. Solar System constraints to general f (R) gravity. Phys. Rev. D 2007, 75, doi:10.1103/PhysRevD.75.124014.
- Navarro, I.; Van Acoleyen, K. f (R) actions, cosmic acceleration and local tests of gravity. J. Cosmol. Astropart. Phys. 2007, 2007, doi:10.1088/1475-7516/2007/02/022.
- Capozziello, S.; Tsujikawa, S. Solar system and equivalence principle constraints on f (R) gravity by the chameleon approach. Phys. Rev. D 2008, 77, doi:10.1103/PhysRevD.77.107501.
- Amendola, L.; Gannouji, R.; Polarski, D.; Tsujikawa, S. Conditions for the cosmological viability of f (R) dark energy models. Phys. Rev. D 2007, 75, doi:10.1103/PhysRevD.75.083504.
- Li, B.; Barrow, J.D. Cosmology of f (R) gravity in the metric variational approach. Phys. Rev. D 2007, 75, doi:10.1103/PhysRevD.75.084010.
- Amendola, L.; Tsujikawa S. Phantom crossing, equation-of-state singularities, and local gravity constraints in f (R) models. Phys. Lett. B 2008, 660, 125-132.
- Hu, W.; Sawicki, I. Models of f (R) cosmic acceleration that evade solar system tests. Phys. Rev. D 2007, 76, doi:10.1103/PhysRevD.76.064004.
- Starobinsky, A.A. Disappearing cosmological constant in f (R) gravity. Lett. J. Exp. Theor. Phys. 2007, 86, 157-163.
- Appleby, S.A.; Battye, R.A. Do consistent f (R) models mimic General Relativity plus Λ. Phys. Lett. B 2007, 654, 7-12.
- Tsujikawa, S. Observational signatures of f (R) dark energy models that satisfy cosmological and local gravity constraints. Phys. Rev. D 2008, 77, doi:10.1103/PhysRevD.77.023507.
- Deruelle, N.; Sasaki, M.; Sendouda, Y. "Detuned" f (R) gravity and dark energy. Phys. Rev. D 2008, 77, doi:10.1103/PhysRevD.77.124024.
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. Class of viable modified f (R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 2008, 77, doi:10.1103/PhysRevD.77.046009.
- Linder, E.V. Exponential gravity. Phys. Rev. D 2009, 80, doi:10.1103/PhysRevD.80.123528.
- De Laurentis, M.; De Martino, I. Testing f (R) theories using the first time derivative of the orbital period of the binary pulsars. Mon. Not. R. Astron. Soc. 2013, 431, 741-748.
- De Laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L. Testing gravitational theories using Eccentric Eclipsing Detached Binaries. Mon. Not. R. Astron. Soc. 2012, 424, 2371-2379.
- De Laurentis, M.; Capozziello, S. Quadrupolar gravitational radiation as a test-bed for f (R) gravity. Astropart. Phys. 2011, 35, 257-265.
- Capozziello, S.; De Laurentis, M.; Nojiri, S.; Odintsov, S.D. Classifying and avoiding singularities in the alternative gravity dark energy models. Phys. Rev. D 2009, 79, doi:10.1103/PhysRevD.79.124007.
- Capozziello, S.; De Laurentis, M.; Nojiri, S.; Odintsov, S.D. f (R) gravity constrained by PPN parameters and stochastic background of gravitational waves. Gen. Relativ. Gravit. 2009, 49, 2313-2344.
- Aviles, A.; Bravetti, A.; Capozziello, S.; Luongo, O. Cosmographic reconstruction of f (T ) cosmology. Phys. Rev. D 2013, 87, doi:10.1103/PhysRevD.87.064025.
- Aviles, A.; Bravetti, A.; Capozziello, S.; Luongo, O. Updated constraints on f (R) gravity from cosmography. Phys. Rev. D 2013, 87, doi:10.1103/PhysRevD.87.044012.
- Carroll, S.M.; Sawicki, I.; Silvestri, A.; Trodden, M. Modified-source gravity and cosmological structure formation. New J. Phys. 2006, 8, doi:10.1088/1367-2630/8/12/323.
- Bean, R.; Bernat, D.; Pogosian, L.; Silvestri, A.; Trodden, M. Dynamics of linear perturbations in f (R) gravity. Phys. Rev. D 2007, 75, doi:10.1103/PhysRevD.75.064020.
- Song, Y.S.; Hu, W.; Sawicki, I. Large scale structure of f (R) gravity. Phys. Rev. D 2007, 75, doi:10.1103/PhysRevD.75.044004.
- Pogosian, L.; Silvestri, A. Pattern of growth in viable f (R) cosmologies. Phys. Rev. D 2008, 77, doi:10.1103/PhysRevD.77.023503.
- Capozziello, S.; De Laurentis, M. The dark matter problem from f (R) gravity viewpoint. Annalen der Physik 2012, 524, 545-578.
- De Martino, I.; De Laurentis, M.; Atrio-Barandela, F.; Capozziello, S. Constraining f (R) gravity with PLANCK data on galaxy cluster profiles. ArXiv E-Prints, 2013, arXiv:1310.0693.
- Zhang, P. Testing gravity against the early time integrated Sachs-Wolfe effect. Phys. Rev. D 2006, 73, doi:10.1103/PhysRevD.73.123504.
- Tsujikawa, S.; Tatekawa, T. The effect of modified gravity on weak lensing. Phys. Lett. B 2008, 665, 325-331.
- Schmidt, F. Stochastic background from inspiralling double neutron stars. Phys. Rev. D 2008, 78, doi:10.1103/PhysRevD.75.043002.
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity; Springer: New York, NY, USA, 2013.
- Einstein, A. Theorie der Raume mit Riemannmetrik und Fernparallelismus. Preuss. Akad. Wiss. Phys. Math. Kl. 1930, 217, doi:10.1002/3527608958.ch42, (in German).
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without an inflaton. Phys. Rev. D 2007, 75, doi:10.1103/PhysRevD.75.084031.
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, doi:10.1103/PhysRevD.79.124019.
- Linder, E.V. Einstein's other gravity and the acceleration of the Universe. Phys. Rev. D 2010, 81, doi:10.1103/PhysRevD.81.127301.
- Li, B.; Sotiriou, T.; Barrow, J.D. Large-scale structure in f (T ) gravity. Phys. Rev. D 2011, 83, doi:10.1103/PhysRevD.83.104017.
- Karami, K.; Abdolmaleki, A. f (T ) modified teleparallel gravity models as an alternative for holographic and new agegraphic dark energy models. Res. Astron. Astrophys. 2013, 13, 757-771.
- Tsyba, P.Y.; Kulnazarov, I.I.; Yerzhanov, K.K.; Myrzakulov, R. Int. J. Theor. Phys. 2011, 50, 1876-1886.
- Bamba, K.; Geng, C.Q.; Lee, C.C.; Luo, L.W. Equation of state for dark energy in f (T ) gravity. J. Cosm. Astropart. Phys. 2011, 1, doi:10.1088/1475-7516/2011/01/021.
- Wu, P.; Yu, H.W. Observational constraints on f (T ) theory. Phys. Lett. B 2010, 693, 415-420.
- Chen, S.H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Cosmological perturbations in f (T ) gravity. Phys. Rev. D 2011, 83, doi:10.1103/PhysRevD.83.023508.
- Dent, J.B.; Dutta, S.; Saridakis, E.N. f (T ) gravity mimicking dynamical dark energy. Background and perturbation analysis. J. Cosmol. Astropart. Phys. 2011, 2011, doi:10.1088/1475-7516/2011/01/009.
- Setare, M.R.; Houndjo, M.J.S. Finite-time future singularities models in f (T ) gravity and the effects of viscosity. Can. J. Phys. 2013, 91, 260-267.
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155-228.
- Linder, E.V. First Principles of Cosmology; Addison-Wesley: London, UK, 1997.
- Tegmark, M. Measuring spacetime: From the big bang to black holes. Science 2002, 296, 1427-1433.
- Durrer, R. What do we really know about dark energy? Philos. Trans. R. Soc. A 2011, 369, 5102-5114.
- Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R.G.; Fabbro, S.; Fouchez, D.; et al. The Supernova Legacy Survey: Measurement of Ω M , Ω Λ and w from the first year data set. Astron. Astrophys. 2006, 447, 31-48.
- Escamilla-Rivera, C.; Lazkoz, R.; Salzano, V.; Sendra, I. Tension between SNela and BAO: Current status and future forecasts. J. Cosmol. Astropart. Phys. 2011, 2011, doi:10.1088/1475-7516/2011/09/003.
- Peebles, P.J.E.; Yu, J.T. Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 1970, 162, 815-839.
- Eisenstein, D.J.; Seo, H.-J.; Sirko, E.; Spergel, D.N. Improving cosmological distance measurements by reconstruction of the baryonic acoustic peak. Astrophys. J. 2007, 664, 675-679.
- Hu, W.; Sugiyama, N. Small scale cosmological perturbations: An analytic approach. Astrophys. J. 1996, 471, 542-570.
- Eisenstein, D.J.; Hu, W. Baryonic features in the matter transfer function. Astrophys. J. 1998, 496, 605-614.
- Meiksin, A.; White, M.; Peacock, J.A. Baryonic signatures in large scale structure. Mon. Not. R. Astron. Soc. 1999, 304, 851-864.
- Seo, H.J.; Eisenstein, D.J. Baryonic acoustic oscillations in simulated galaxy redshift surveys. Astrophys. J. 2005, 633, 575-588.
- Angulo, R.; Baugh, C.M.; Frenk, C.S.; Bower, R.G.; Jenkins, A.; Morris, S.L. Constraints on the dark energy equation of state from the imprint of baryons on the power spectrum of clusters. Mon. Not. R. Astron. Soc. 2005, 362, 25-29.
- Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629-636.
- Jeong, D.; Komatsu, E. Perturbation theory reloaded: Analytical calculation of non-linearity in baryonic oscillations in the real space matter power spectrum. Astrophys. J. 2006, 651, 619-626.
- Huff, E.; Schulz, A.E.; White, M.; Schlegel, D.J.; Warren, M.S. Simulations of baryon oscillations. Astrophys. Phys. 2007, 26, 351-366.
- Angulo, R.E.; Baugh, C.M.; Frenk, C.S.; Lacey, C.G. The detectability of baryonic acoustic oscillations in future galaxy surveys. Mon. Not. R. Astron. Soc. 2008, 383, 755-776.
- Weinberg, D.H.; Mortonson, M.J.; Eisenstein, D.J.; Hirata, C.; Riess, A.G.; Rozo, E. Observational probes of cosmic acceleration. Phys. Rep. 2013, 530, 87-255.
- Percival, W.J.; Cole, S.; Eisenstein, D.J.; Nichol, R.C.; Peacock, J.A.; Pope, A.C.; Szalay, A.S. Measuring the baryon acoustic oscillation scale using the SDSS and 2dFGRS. Mon. Not. R. Astron. Soc. 2007, 381, 1053-1066.
- Percival, W.J.; Reid, B.A.; Eisenstein, D.J.; Bahcall, N.A.; Budavari, T.; Frieman, J.A.; Fukugita, M.; Gunn, J.E.; Ivezić, Ž.; Knapp, G.R.; et al. Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon. Not. R. Astron. Soc. 2010, 401, 2148-2168.
- Shafieloo, A.; Clarkson, C. Model independent tests of the standard cosmological model. Phys. Rev. D 2010, 81, doi:10.1103/PhysRevD.81.083537.
- Shafieloo, A.; Sahni, V.; Starobinsky, A.A. A new null diagnostic customized for reconstructing the properties of dark energy from baryon acoustic oscillations data. Phys. Rev. D 2012, 86, doi:10.1103/PhysRevD.86.103527.
- Phillips, M.M. The absolute magnitudes of Type IA supernovae. Astrophys. J. Lett. 1993, 413, 105-108.
- Howell, D.A.; Sullivan, M.; Nugent, P.E.; Ellis, R.S.; Conley, A.J.; Le Borgne, D.; Carlberg, R.G.; Guy, J.; Balam, D.; Basa, S.; et al. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 2006, 443, 308-311.
- Filippenko, A.V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 1997, 35, 309-355.
- Barbon, R.; Buondí, V.; Cappellaro, E.; Turatto, M. The Asiago Supernova Catalogue-10 years after. Astron. Astrophys. 1999, 139, 531-536.
- Ho, L.C.; Van Dyk, S.D.; Pooley, G.G.; Sramek, R.A.; Weiler, K.W. Discovery of radio outbursts in the active nucleus of M 81. Astron. J. 1999, 118, 843-852.
- Kowalski, M.; Rubin, D.; Aldering, G.; Agostinho, R.J.; Amadon, A.; Amanullah, R.; Balland, C.; Barbary, K.; Blanc, G.; Challis, P.J.; et al. Improved cosmological constraints from new, old and combined supernova datasets. Astrophys. J. 2008, 686, 749-778.
- Amanullah, R.; Lidman, C.; Rubin, D.; Aldering, G.; Astier, P.; Barbary, K.; Burns, M.S.; Conley, A.; Dawson, K.S.; Deustua, S.E.; et al. Spectra and light curves of six Type Ia supernovae at 0.511 < z < 1.12 and the union2 compilation. Astrophys. J. 2010, 716, 712-738.
- Guy, J.; Sullivan, M.; Conley, A.; Regnault, N.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R.G.; Fouchez, D.; Hardin, D.; et al. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints. Astron. Astrophys. 2010, 523, 7:1-7:34.
- Conley, A.; Guy, J.; Sullivan, M.; Regnault, N.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R.G.; Fouchez, D.; Hardin, D.; et al. Supernova constraints and systematic uncertainties from the First 3 Years of the Supernova Legacy Survey. Astrophys. J. 2011, 192, doi:10.1088/0067-0049/192/1/1.
- Sullivan, M.; Guy, J.; Conley, A.; Regnault, N.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R.G.; Fouchez, D.; Hardin, D.; et al. SNLS3: Constraints on dark energy combining the Supernova Legacy Survey three year data with other probes. Astrophys. J. 2011, 737, doi:10.1088/0004-637X/737/2/102.
- Salzano, V.; Wang, Y.; Sendra, I.; Lazkoz, R. Linear dark energy equation of state revealed by supernovae? ArXiv E-Prints, 2012, arXiv:1211.1012.
- Wilson, R.W.; Panzias, A.A. A measurement of excess antenna temperature at 4080 M c/s. Astroph. J. 1965, 142, 419-421.
- Fixsen, D.J.; Cheng, E.S.; Gales, J.M.; Mather, J.C.; Shafer, R.A.; Wright, E.L. The cosmic microwave background spectrum from the full COBE/FIRAS data set. Astrophys. J. 1996, 473, 576-587.
- Silk, J. Cosmic black-body radiation and galaxy formation. Astrophys. J. 1968, 151, 459:1-459:14.
- Sachs, R.K.; Wolfe, A.M. Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 1967, 147, 73:1-73:18.
- Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XXIII. Isotropy and Statistics of the CMB. ArXiv E-Prints, 2013, arXiv:1303.5083.
- Francis, M. First Planck Results: The Universe Is still Weird and Interesting. Available online: http://arstechnica.com/science/2013/03/first-planck-results-the-universe-is-still-weird- and-interesting/ (accessed on 2 December 2013).
- Europe Space Agency Web Page. Planck Reveals An almost Perfect Universe. Available online: http://www.esa.int/Our Activities/Space Science/Planck/Planck reveals an almost perfect Universe (accessed on 2 December 2013).
- Europe Space Agency. Planck Legacy Archive (PLA). Available online: http://www.sciops.esa.int/index.php?project=planck&page=Planck Legacy Archive (accessed on 2 December 2013).
- Vielva, P.; Martinez-Gonzalez, E.; Barreiro, R.B.; Sanz, L.J.; Cayon, L. Detection of non-Gaussianity in the WMAP 1-year data using spherical wavelets. Astrophys. J. 2004, 609, 22-34.
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. 2003, 148, 175-194.
- Bennett, C.L.; Hill, R.S.; Hinshaw, G.; Larson, D.; Smith, K.M.; Dunkley, J.; Gold, B.; Halpern, M.; Jarosik, N.; Kogut, A.; et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Are there cosmic microwave background anomalies? Astrophys. J. 2011, 192, doi:10.1088/0067-0049/192/2/17.
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observation. Astrophys. J. 2013, 208, doi:10.1088/0067-0049/208/2/19.
- Melchiorri, A.; Griffiths, L.M. From anisotropy to omega. New Astron. Rev. 2001, 45, 321-328.
- Riess, A.G. A redetermination of the Hubble constant with the Hubble Space Telescope from a differential distance ladder. Astrophys. J. 2009, 699, 539-563.
- Gruber, C.; Luongo, O. Cosmographic analysis of the equation of state of the universe through Padé approximations. ArXiv E-Prints, 2013, arXiv:1309.3215.
- Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XVI. Cosmological parameters. ArXiv E-Prints, 2013, arXiv:1303.5076.
- Neben, A.R.; Turner, M.S. Beyond H 0 and q 0 : Cosmology is no longer just two numbers. Astrophys. J. 2013, 769, 133:1-133:8.
- Luongo, O. Dark energy from a positive jerk parameter. Mod. Phys. Lett. A 2013, 28, doi:10.1142/S0217732313500806 .
- Aviles, A.; Gruber, C.; Luongo, O.; Quevedo, H. Constraints from Cosmography in various parameterizations. ArXiv E-Prints, 2013, arXiv:1301.4044.