Academia.eduAcademia.edu

Outline

On the Expressive Power of IF-Logic with Classical Negation

2011, Lecture Notes in Computer Science

https://doi.org/10.1007/978-3-642-20920-8_16

Abstract

It is well-known that Independence Friendly (IF) logic is equivalent to existential second-order logic (Σ 1 1) and, therefore, is not closed under classical negation. The boolean closure of IF sentences, called Extended IF-logic, on the other hand, corresponds to a proper fragment of ∆ 1 2. In this paper we consider IF-logic extended with Hodges' flattening operator, which allows classical negation to occur also under the scope of IF quantifiers. We show that, nevertheless, the expressive power of this logic does not go beyond ∆ 1 2. As part of the proof, we give a prenex normal form result and introduce a non-trivial syntactic fragment of full second-order logic that we show to be contained in ∆ 1 2 .

References (11)

  1. Xavier Caicedo and Michal Krynicki. Quantifiers for reasoning with imperfect information and Σ 1 1 -logic. Contemporary Mathematics, 235:17-31, 1999.
  2. Herbert Enderton. Finite partially ordered quantifiers. Zeitschrift für Mathema- tische Logik und Grundlagen der Mathematik, 16:393-397, 1970.
  3. Santiago Figueira, Daniel Gorín, and Rafael Grimson. On the formal semantics of IF-like logics. Journal of Computer and System Sciences, 76(5):333-346, 2009.
  4. Jaako Hintikka. The Principles of Mathematics Revisited. Cambridge University Press, 1996.
  5. Jaako Hintikka and Gabriel Sandu. Game-theoretical semantics. In Johan van Benthem and Alice ter Meulen, editors, Handbook of logic and language, chapter 6. The MIT press, 1997.
  6. Wilfrid Hodges. Compositional semantics for a language of imperfect information. Logic Journal of the IGPL, 5(4), 1997.
  7. Theo M. V. Janssen. Independent choices and the interpretation of IF logic. Jour- nal of Logic, Language and Information, 11(3):367-387, 2002.
  8. Theo M. V. Janssen and Francien Dechesne. Signalling in IF games: a tricky business. In The age of alternative logics, chapter 15, pages 221-241. Springer, 2006.
  9. Marcin Mostowski. Arithmetic with the Henkin quantifier and its generalizations. In F. Gaillard and D. Richard, editors, Séminaire du Laboratoire Logique, Algo- rithmique et Informatique Clermontoise, volume 2, pages 1-25, 1991.
  10. Leszek A. Ko lodziejczyk. The expressive power of Henkin quantifiers with dual- ization. Master's thesis, Institute of Philosophy, Warsaw University, Poland, 2002.
  11. Jouko A. Väänänen. On the semantics of informational independence. Logic Jour- nal of the IGPL, 10(3):339-352, 2002.