Academia.eduAcademia.edu

Outline

On the Complexity of Unary Tiling-Recognizable Picture Languages

2007, Lecture Notes in Computer Science

https://doi.org/10.1007/978-3-540-70918-3_33

Abstract

We give a characterization, in terms of computational complexity, of the family Rec1 of the unary picture languages that are tiling recognizable. We introduce quasi-unary strings to represent unary pictures and we prove that any unary picture language L is in Rec1 if and only if the set of all quasi-unary strings encoding the elements of L is recognizable by a one-tape nondeterministic Turing machine that is space and head-reversal linearly bounded. In particular, the result implies that the family of binary string languages corresponding to tiling-recognizable square languages lies between NTime(2 n) and NTime(4 n). This also implies the existence of a nontiling-recognizable unary square language that corresponds to a binary string language recognizable in nondeterministic time O(4 n log n).

References (12)

  1. M. Agrawal, N. Kayal, N. Saxena. PRIMES is in P. Annals of Mathematics, 160(2): 781-793, 2004.
  2. M. Anselmo, D. Giammarresi, M. Madonia. Regular expressions for two- dimensional languages over one-letter alphabet. In Proc. 8th DLT, C.S. Calude, E. Calude and M.J. Dinneen (Eds.), LNCS 3340, 63-75, Springer-Verlag, 2004.
  3. D. Giammarresi, A. Restivo. Recognizable picture languages. Int. J. Pattern Recog- nition and Artificial Intelligence, Special Issue on Parallel Image Processing, 31-42, 1992.
  4. D. Giammarresi, A. Restivo. Two-dimensional languages. In Handbook of Formal Languages, G. Rosenberg and A. Salomaa (Eds.), Vol. III, 215 -268, Springer- Verlag, 1997.
  5. D. Giammarresi, A. Restivo, S. Seibert, W. Thomas. Monadic second order logic over rectangular pictures and recognizability by tiling system. Information and Computation, 125(1):32-45, 1996.
  6. K. Inoue, I. Takanami. A survey of two-dimensional automata theory. In Proc. 5th Int. Meeting of Young Computer Scientists, J. Dasson, J. Kelemen (Eds.), LNCS 381, 72-91, Springer-Verlag, 1990.
  7. J. Kari, C. Moore. New results on alternating and non-deterministic two- dimensional finite state automata. In Proc. 18th STACS, A. Ferreira, H. Reichel (Eds.), LNCS 2010, 396-406, Springer-Verlag, 2001.
  8. O. Matz. Regular expressions and context-free grammars for picture languages. In Proc. 14th STACS, LNCS 1200, 283-294, Springer-Verlag, 1997.
  9. A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential space. Proc. 13th Annual IEEE Symp. on Switching and Automata Theory 125-129, 1972.
  10. A.R. Meyer and L.J. Stockmeyer. Words problems requiring exponential time. Proc. 5th ACM Symp. on Theory of Computing 1-9, 1973.
  11. J. I. Seiferas, M. J. Fischer, A. R. Meyer. Separating nondeterministic time com- plexity classes. Journal of ACM, 25(1): 146-167, 1978.
  12. R. Siromoney. Advances in array languages. In Graph-grammars and their applica- tions to Computer Science, Ehrig et al. Eds., LNCS 291, 549-563, Springer-Verlag, 1987.