Academia.eduAcademia.edu

Outline

A logic for evidence and truth *

Abstract

This paper presents a paraconsistent and paracomplete natural deduction system, called the Logic of Evidence and Truth (LETJ). LETJ is a Logic of Formal Inconsistency and Undeterminedness (LFIU) that is able to recover classical logic when appropriate. LETJ is anti-dialetheist in the sense that its consequence relation is trivial in the presence of any true contradictions.

References (35)

  1. if s(A → B) = 1, then s(A) = 0 or s(B) = 1;
  2. s(A ∧ B) = 1 iff s(A) = 1 and s(B) = 1;
  3. s(A ∨ B) = 1 iff s(A) = 1 or s(B) = 1;
  4. s(A) = 1 iff s(¬¬A) = 1;
  5. s(¬(A ∧ B)) = 1 iff s(¬A) = 1 or s(¬B) = 1;
  6. s(¬(A ∨ B)) = 1 iff s(¬A) = 1 and s(¬B) = 1;
  7. s(¬(A → B)) = 1 iff s(A) = 1 and s(¬B) = 1;
  8. s(•A) = 1 implies [s(¬A) = 1 iff s(A) = 0].
  9. Definition 9. A valuation for LET J is a semivaluation for which the condition below holds: References
  10. Aristotle (1996) The Complete Works of Aristotle. Oxford University Press
  11. Baker A (1975) Transcendental number theory. Cambridge University Press
  12. Batens D (1989) Dynamic dialectical logics. In: Paraconsistent Logic. Es- says on the Inconsistent (ed. Graham Priest et al.), Philosophia Verlag, München, pp 187-217
  13. Brouwer L (1907) On the foundations of mathematics. In: Collected Works vol. I. (ed. A. Heyting), North-Holland Publishing Company (1975)
  14. Brouwer L (1948) Consciousness, philosophy and mathematics. In: Col- lected Works vol. I. (ed. A. Heyting), North-Holland Publishing Company (1975)
  15. Carnielli W, Coniglio M, Marcos J (2007) Logics of formal inconsistency. In: Guenthner G (ed) Handbook of Philosophical Logic, vol 14, Springer
  16. da Costa N (1963) Sistemas Formais Inconsistentes. Curitiba: Editora da UFPR (1993)
  17. da Costa N (1974) On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic XV, number 4:497-510
  18. Costa N, Alves EH (1977) A semantical analysis of the calculi Cn. Notre Dame Journal of Formal Logic 18:621-630
  19. van Dalen D (2008) Logic and structure, 4th edn. Springer
  20. Dubucs J (2008) Truth and experience of truth. In: One Hundred Years of Intuitionism (ed. Mark van Atten et al.), Birkhäuser Verlag
  21. Einstein A (1916) Relativity: The Special and General Theory. Emporum Books, 2013
  22. Feynman R, Leighton R, Sands M (2010) The Feynman Lectures on Physics (vol. I). New York: Basic Books
  23. Gentzen G (1935) Investigations into logical deduction. In: The Collected Papers of Gerhard Gentzen (ed. M.E. Szabo), North-Holland Publishing Company (1969)
  24. Heyting A (1956) Intuitionism: an Introduction. London: North-Holland Publishing Company
  25. Kelly T (2014) Evidence. The Stanford Encyclope- dia of Philosophy (Fall 2014, ed EN Zalta) URL plato.stanford.edu/archives/fall2014/entries/evidence
  26. Kolmogorov A (1925) On the principle of excluded middle. In: From Frege to Gödel, Lincoln: toExcel Press, 1979, 1925
  27. Loparic A (1986) A semantical study of some propositional calculi. The Journal of Non-Classical Logic 3(1):73-95, URL https://copy.com/nvDkMT39nyS9pChD
  28. Loparic A (2010) Valuation semantics for intuitionistic propositional cal- culus and some of its subcalculi. Principia 14(1):125-133
  29. López-Escobar E (1972) Refutability and elementary number theory. Inda- gationes Mathematicae 34:362-374
  30. Marcos J (2005) Nearly every normal modal logic is paranormal. Logique et Analyse 48:279-300
  31. Meheus J (2002) Preface. In: Inconsistency in Science (Ed. J. Meheus)., Dordrecht: Springer
  32. Nickles T (2002) From copernicus to ptolemy: inconsistency and method. In: Inconsistency in Science (Ed. J. Meheus)., Dordrecht: Springer
  33. Odintsov S (2008) Constructive Negations and Paraconsistency, Trends in Logic, vol 26. Springer
  34. Prawitz D (1965) Natural Deduction: A Proof-Theoretical Study. Dover Publications (2006)
  35. Priest G, Berto F (2013) Dialetheism. Stanford Encyclopedia of Philosophy http://plato.stanford.edu/archives/sum2013/entries/dialetheism/