Cartan media: geometric continuum mechanics in homogeneous spaces
2023, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.2310.01388Abstract
We present a geometric formulation of the mechanics of a field that takes values in a homogeneous space X on which a Lie group G acts transitively. This generalises the mechanics of Cosserat media where X is the frame bundle of Euclidean space and G is the special Euclidean group. Kinematics is described by a map from a space-time manifold to the homogeneous space. This map is characterised locally by generalised strains (representing spatial deformations) and generalised velocities (representing temporal motions). These are, respectively, the spatial and temporal components of the Maurer-Cartan one-form in the Lie algebra of G. Cartan's equation of structure provides the fundamental kinematic relationship between generalised strains and velocities. Dynamics is derived from a Lagrange-d'Alembert principle in which generalised stresses and momenta, taking values in the dual Lie algebra of G, are paired, respectively, with generalised strains and velocities. For conservative systems, the dynamics can be expressed completely through a generalised Euler-Poincare action principle. The geometric formulation leads to accurate and efficient structure-preserving integrators for numerical simulations. We provide an unified description of the mechanics of Cosserat solids, surfaces and rods using our formulation. We further show that, with suitable choices of X and G, a variety of systems in soft condensed matter physics and beyond can be understood as instances of a class of materials we provisionally call Cartan media.
References (131)
- H. Schaefer, ZAMM -Journal of Applied Mathe- matics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 47, 319 (1967).
- H. Schaefer, in Mechanics of Generalized Con- tinua, IUTAM Symposium, edited by E. Kröner (Springer, Freudenstadt-Stuttgart, 1967) pp. 57- 62.
- J. N. Clelland, From Frenet to Cartan: The Method of Moving Frames (American Mathematical Soci- ety, 2017).
- G. Darboux, Leçons Sur La Théorie Générale Des Surfaces et Les Applications Géometriques Du Calcul Infinitésimal: Première Partie (Gauthier- Villars, 1887).
- É. Cartan, Bull. Amer. Math. Soc 41, 774 (1935).
- E. Cosserat, M. Brocato, F. Cosserat, and K. Chatzis, Théorie des corps déformables (Edi- tions Hermann, 2009).
- R. C. Batra, Elements of Continuum Mechanics (AIAA, 2006).
- E. M. P. Cosserat and F. Cosserat, Theory of De- formable Bodies (National Aeronautics and Space Administration, 1909).
- V. A. Eremeyev, L. P. Lebedev, and H. Altenbach, Foundations of Micropolar Mechanics (Springer Science & Business Media, 2012).
- H. Altenbach and V. A. Eremeyev, in Generalized Continua from the Theory to Engineering Applica- tions, CISM International Centre for Mechanical Sciences, edited by H. Altenbach and V. A. Ere- meyev (Springer, Vienna, 2013) pp. 65-130.
- M. B. Rubin, in Cosserat Theories: Shells, Rods and Points, Solid Mechanics and Its Applications, edited by M. B. Rubin (Springer Netherlands, Dor- drecht, 2000) pp. 191-310.
- Nonlinear Problems of Elasticity, Applied Mathe- matical Sciences, Vol. 107 (Springer-Verlag, New York, 2005).
- R. P. Nordgren, Journal of Applied Mechanics 41, 777 (1974).
- R. E. Goldstein and S. A. Langer, Physical Review Letters 75, 1094 (1995).
- K. Soda, Journal of the Physical Society of Japan 35, 866 (1973).
- T. R. Powers, Reviews of Modern Physics 82, 1607 (2010).
- Note that a Lie group G may be considered a ho- mogeneous space, as it acts on itself transitively.
- To provide further mathematical context, we also note that within differential geometry Φ is called an immersion of G into M , and we have ξ = Φ * ω, where Φ * denotes the pull-back, and where ω = g -1 dg, g ∈ G is known as the Maurer-Cartan form. See [3] for a detailed proof, and for further mathe- matical exposition.
- M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden, "Discrete Exterior Calculus," (2005), arxiv:math/0508341.
- A. N. Hirani, .
- J. K. Hale, Ordinary Differential Equations (Courier Corporation, 2009).
- F. Frenet, Journal de Mathématiques Pures et Ap- pliquées , 437 (1852).
- E. Cartan, La théorie des groupes finis et continus et la géométrie différentielle (1951).
- M. Fels and P. J. Olver, Acta Applicandae Mathe- matica 51, 161 (1998).
- M. Fels and P. J. Olver, Acta Applicandae Mathe- matica 55, 127 (1999).
- P. J. Olver, , 37.
- P. J. Olver, in Computer Algebra and Geometric Algebra with Applications, Lecture Notes in Com- puter Science, edited by H. Li, P. J. Olver, and G. Sommer (Springer, Berlin, Heidelberg, 2005) pp. 105-138.
- H. Poincaré, CR Acad. Sci 132, 369 (1901).
- C.-M. M. Marle, On Henri Poincaré's Note "Sur Une Forme Nouvelle Des Équations de La Mé- canique", Tech. Rep. (Journal of Geometry and Symmetry in Physics, 2013).
- J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems (Springer Science & Business Media, 2013).
- D. D. Holm, Geometric Mechanics: Rotating, Translating and Rolling (Imperial College Press, 2008).
- D. D. Holm, J. E. Marsden, and T. S. Ratiu, Ad- vances in Mathematics 137, 1 (1998).
- U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (SIAM, 1998).
- A. Iserles, H. Munthe-Kaas, S. Nørsett, and A. Zanna, Acta Numerica (2005),
- 1017/S0962492900002154.
- H. Munthe-Kaas, Applied Numerical Mathematics Proceedings of the NSF/CBMS Regional Confer- ence on Numerical Analysis of Hamiltonian Differ- ential Equations, 29, 115 (1999).
- C. J. Budd and A. Iserles, Philosophical Trans- actions: Mathematical, Physical and Engineering Sciences 357, 945 (1999), 55185.
- K. Engø and S. Faltinsen, SIAM Journal on Nu- merical Analysis 39, 128 (2001).
- W. Rossmann, Lie Groups: An Introduction Through Linear Groups (Oxford University Press, 2006).
- F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi, IEEE Transactions on Robotics 30, 1109 (2014).
- F. Boyer, S. Ali, and M. Porez, IEEE Transactions on Robotics 28, 303 (2012).
- K. L. Sack, S. Skatulla, and C. Sansour, Inter- national Journal of Solids and Structures 81, 84 (2016).
- S. Grazioso, G. Di Gironimo, and B. Siciliano, Soft Robotics 6, 790 (2019).
- L. Obrezkov, M. K. Matikainen, and R. Kouhia, International Journal of Solids and Structures 254-255, 111899 (2022).
- O. Aydin, X. Zhang, S. Nuethong, G. J. Pagan- Diaz, R. Bashir, M. Gazzola, and M. T. A. Saif, Proceedings of the National Academy of Sciences 116, 19841 (2019).
- N. Naughton, J. Sun, A. Tekinalp, T. Parthasarathy, G. Chowdhary, and M. Gaz- zola, IEEE Robotics and Automation Letters 6, 3389 (2021).
- P. Neff, Continuum Mechanics and Thermodynam- ics 16, 577 (2004).
- J. C. Simo and D. D. Fox, Computer Methods in Applied Mechanics and Engineering 72, 267 (1989).
- J. L. Ericksen, The Quarterly Journal of Mechanics and Applied Mathematics 27, 213 (1974).
- S. Krishnaswamy, International Journal of Engi- neering Science 34, 873 (1996).
- P. Rangamani, A. Benjamini, A. Agrawal, B. Smit, D. J. Steigmann, and G. Oster, Biomechanics and Modeling in Mechanobiology 13, 697 (2014).
- I. Stefanou, J. Sulem, and I. Vardoulakis, Acta Geotechnica 3, 71 (2008).
- C. S. Jog, Computer Methods in Applied Mechan- ics and Engineering 193, 2191 (2004).
- H. Dong, J. Wang, and M. B. Rubin, International Journal of Solids and Structures 51, 462 (2014).
- M. B. Rubin and Y. Benveniste, Journal of the Mechanics and Physics of Solids 52, 1023 (2004).
- M. Epstein and M. de León, Proceedings: Math- ematical, Physical and Engineering Sciences 457, 2507 (2001), 3067279.
- J. D. Lee and A. C. Eringen, The Journal of Chem- ical Physics 58, 4203 (2003).
- E. A. Ivanova, in Recent in the The- ory of Plates and Plate-Like Structures, Advanced Structured Materials, edited by H. Altenbach, S. Bauer, V. A. Eremeyev, G. I. Mikhasev, and N. F. Morozov (Springer International Publishing, Cham, 2022) pp. 75-87.
- G. Paria, Bulletin mathématique de la Société des Sciences Mathématiques de la République Social- iste de Roumanie 22 (70), 303 (1978), 43680366.
- E. A. Ivanova, ZAMM -Journal of Applied Mathe- matics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik n/a, e202100333.
- H. Kotera, M. Sawada, and S. Shima, Inter- national Journal of Mechanical Sciences 42, 129 (2000).
- P. R. Onck, Comptes Rendus Mécanique 330, 717 (2002).
- D. Besdo, Arch. Mech 37, 603 (1985).
- D. Besdo, in Advances in Continuum Mechan- ics: 39 Papers from International Experts Dedi- cated to Horst Lippmann, edited by O. S. Brüller, V. Mannl, and J. Najar (Springer, Berlin, Heidel- berg, 1991) pp. 122-142.
- B. Ebrahimian, A. Noorzad, and M. I. Alsaleh, European Journal of Environmental and Civil En- gineering 25, 2337 (2021).
- L. S. Mohan, P. R. Nott, and K. K. Rao, Acta Mechanica 138, 75 (1999).
- I. Stefanou, J. Sulem, and H. Rattez, in Handbook of Nonlocal Continuum Mechanics for Materials and Structures, edited by G. Z. Voyiadjis (Springer International Publishing, Cham, 2017) pp. 1-25.
- D. Ieşan, International Journal of Solids and Struc- tures 48, 573 (2011).
- S. Forest, F. Barbe, and G. Cailletaud, Interna- tional Journal of Solids and Structures 37, 7105 (2000).
- C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Princeton University Press, 2017).
- Y. Basar and D. Weichert, Nonlinear Continuum Mechanics of Solids: Fundamental Mathematical and Physical Concepts (Springer Science & Busi- ness Media, 2013).
- C. Sansour and H. Bednarczyk, Computer Meth- ods in Applied Mechanics and Engineering 120, 1 (1995).
- J. Altenbach, H. Altenbach, and V. A. Eremeyev, Archive of Applied Mechanics 80, 73 (2010).
- H. Altenbach and V. A. Eremeyev, in Generalized Continua from the Theory to Engineering Applica- tions, CISM International Centre for Mechanical Sciences, edited by H. Altenbach and V. A. Ere- meyev (Springer, Vienna, 2013) pp. 131-178.
- P. M. Naghdi, The Theory of Shells and Plates (University of California, 1972).
- L. Steinberg and R. Kvasov, Cosserat Plate Theory (CRC Press, 2022).
- H. Altenbach and V. A. Eremeyev, in Mechan- ics of Generalized Continua: One Hundred Years After the Cosserats, Advances in Mechanics and Mathematics, edited by G. A. Maugin and A. V. Metrikine (Springer, New York, NY, 2010) pp. 27- 35.
- A. E. Green, P. M. Naghdi, and M. L. Wenner, Mathematical Proceedings of the Cambridge Philo- sophical Society 69, 227 (1971).
- in Nonlinear Problems of Elasticity, Applied Mathematical Sciences, edited by S. S. Antman (Springer, New York, NY, 2005) pp. 659-708.
- M. Mohammadi Saem, P. Lewintan, and P. Neff, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, 20210158 (2021).
- J. L. Ericksen, in Proc. Int. Symp. on Recent De- velopments in the Theory and Application of Gen- eralized and Oriented Media (1979) pp. 27-39.
- S. S. Chern, W. H. Chen, and K. S. Lam, Lec- tures on Differential Geometry, Series on Univer- sity Mathematics, Vol. 1 (WORLD SCIENTIFIC, 1999).
- H. Munthe-Kaas and O. Verdier, Foundations of Computational Mathematics 16, 899 (2016).
- F. Renda, F. Boyer, J. Dias, and L. Seneviratne, IEEE Transactions on Robotics 34, 1518 (2018), arxiv:1702.03660 [cs].
- B. Caasenbrood, A. Pogromsky, and H. Nijmeijer, SN Computer Science 3, 494 (2022).
- F. Boyer, M. Porez, and W. Khalil, IEEE Trans- actions on Robotics 22, 763 (2006).
- A. Verl, A. Albu-Schäffer, O. Brock, and A. Raatz, Soft Robotics: Transferring Theory to Application (Springer, 2015).
- D. K. Pai, Computer Graphics Forum 21, 347 (2002).
- X. Zhang, F. K. Chan, T. Parthasarathy, and M. Gazzola, Nature Communications 10, 4825 (2019).
- W. M. Kier and K. K. Smith, Zoological Journal of the Linnean Society 83, 307 (1985).
- D. E. Moulton, H. Oliveri, and A. Goriely, Pro- ceedings of the National Academy of Sciences 117, 32226 (2020).
- A. Goriely, The Mathematics and Mechanics of Bi- ological Growth, Interdisciplinary Applied Mathe- matics, Vol. 45 (Springer, New York, NY, 2017).
- D. E. Moulton, T. Lessinnes, S. O'Keeffe, L. Dorf- mann, and A. Goriely, Proceedings of the Royal Society A: Mathematical, Physical and Engineer- ing Sciences 472, 20160030 (2016).
- H. Oliveri, K. Franze, and A. Goriely, Physical Review Letters 126, 118101 (2021).
- B. Kaczmarski, D. E. Moulton, E. Kuhl, and A. Goriely, Journal of the Mechanics and Physics of Solids , 104918 (2022).
- Lukas Kikuchi, Ronojoy Adhikari. In preparation.
- G. Kirchhoff, 1859, 285 (1859).
- E. H. Dill, Archive for History of Exact Sciences 44, 1 (1992).
- C. Eloy and E. Lauga, Physical Review Letters 109, 038101 (2012).
- A.-K. Tornberg and M. J. Shelley, Journal of Com- putational Physics 196, 8 (2004).
- H. Hasimoto, Journal of Fluid 51, 477 (1972).
- A. Laskar and R. Adhikari, New Journal of Physics 19, 033021 (2017).
- A. Laskar and R. Adhikari, Soft Matter 11, 9073 (2015).
- R. E. Goldstein, A. Goriely, G. Huber, and C. W. Wolgemuth, Physical Review Letters 84, 1631 (2000).
- R. Betchov, Journal of Fluid Mechanics 22, 471 (1965).
- Z. Liu, F. Qin, L. Zhu, R. Yang, and X. Luo, Physics of Fluids 32, 041902 (2020).
- R. E. Goldstein and A. Goriely, Physical Review E 74, 010901 (2006).
- M. Lenz, D. J. G. Crow, and J.-F. Joanny, Physical Review Letters 103, 038101 (2009).
- D. F. Parker, Zeitschrift für Angewandte Mathe- matik und Physik (ZAMP) 35, 833 (1984).
- R. L. Bishop, The American Mathematical Monthly 82, 246 (1975), 2319846.
- A. E. H. Love, Philosophical Transactions of the Royal Society of London. A 179, 491 (1888), 90527.
- A. B. Basset, American Journal of Mathematics 16, 254 (1894), 2369634.
- H. Altenbach and P. A. Zhilin, in Theories of Plates and Shells: Critical Review and New Applications, Lecture Notes in Applied and Computational Me- chanics, edited by R. Kienzler, I. Ott, and H. Al- tenbach (Springer, Berlin, Heidelberg, 2004) pp. 1- 12.
- F. I. Niordson, Shell Theory (Elsevier, 2012).
- W. T. Koiter, (1945).
- J. Paulose and D. R. Nelson, Soft Matter 9, 8227 (2013).
- B. Budiansky and J. W. Hutchinson, Buckling of Circular Cylindrical Shells under Axial Compres- sion., Tech. Rep. (1972).
- J. W. Hutchinson, Proceedings of the Royal So- ciety A: Mathematical, Physical and Engineering Sciences 472, 20160577 (2016).
- D. J. Steigmann, Mathematics and Mechanics of Solids 4, 275 (1999).
- D. D. Fox and J. C. Simo, Computer Methods in Applied Mechanics and Engineering 98, 329 (1992).
- T. J. R. Hughes and F. Brezzi, Computer Meth- ods in Applied Mechanics and Engineering 72, 105 (1989).
- J. C. Simo, M. S. Rifai, and D. D. Fox, Interna- tional Journal for Numerical Methods in Engineer- ing 34, 117 (1992).
- M. Eisenberg and R. Guy, The American Mathe- matical Monthly 86, 571 (1979), 2320587.
- L. N. Trefethen, Spectral Methods in MATLAB (SIAM, 2000).
- R. K. Manna and P. B. S. Kumar, Soft Matter 15, 477 (2019).
- C.-P. Hsu, A. Sciortino, Y. A. de la Trobe, and A. R. Bausch, Nature Communications 13, 2579 (2022).
- L. T. Kikuchi, "PyCoss," Commit: 5d7615ead7595721f77baaece143003c5b42188b (2022).
- S. V. Ketov, Quantum Non-linear Sigma-Models: From Quantum Field Theory to Supersymmetry, Conformal Field Theory, Black Holes and Strings (Springer Science & Business Media, 2013).
- D. H. Delphenich, "Mechanics of Cosserat media: II. relativistic theory," (2015), arxiv:1510.01243 [gr-qc, physics:math-ph].
- W. Rindler, Relativity: Special, General, and Cos- mological (Oxford University Press, 2001).
- We anticipate that the failure of spatial integrabil- ity, Eq. 7b, can be considered a topological defect.