Cartan's Soldered Spaces and Conservation Laws in Physics
2015, International Journal of Geometric Methods in Modern Physics
https://doi.org/10.1142/S0219887815500899Abstract
In this paper, we will introduce a generalized soldering p-forms geometry, which can be the right framework to describe many new approaches and concepts in modern physics. Here we will treat some aspect of the theory of local cohomology in fields theory or more precisely the theory of soldering-form conservation laws in physics. We provide some illustrative applications, primarily taken from the Einstein equations of general theory of relativity and Yang-Mills theory. This theory can be considered to be a generalization of Noether's theory of conserved current to differential forms of any degree. An essential result of this, is that the conservation of the energy-momentum in general relativity, is linked to the fact that the vacuum field equations are equivalent to the integrability conditions of a 1 st -order system of differential equations. We also apply the idea of the soldered space and the integrability conditions to the case of Yang-Mills theory. The mathematical framework, where these intuitive considerations would fit naturally, can be used to describe also the dynamics of changing manifolds.
References (26)
- Stachel, J., What a Physicist Can Learn From the Discovery of General Relativity, in Remo Ruffini (ed), Proceedings of the Fourth Marcel Grossmann Meeting on General Relativity Amsterdam: Else- vier Science Publishers, 1857-1862. (1986)
- As we said in the introduction P has a natural parallelization depending only on the choice of basis for g R where g is the algebra of the structure group G. Thus, one has a trivial spin structure, say Spin(P ) → F (P ), associated with this trivialization of the frame bundle F (P ), even if the base M has no spin structure.
- Actually, SO(10) GUT is a misnomer, since the fundamental spinor representation of Spin(10) does not descend to a single-valued representation of SO(10).
- Klein, F. A comparative review of recent researches in geometry, trans. M. W. Haskell, Bull. New York Math. Soc. 2 (1892-1893) 215-249. Available at http://math.ucr.edu/home/baez/erlangen/.
- Hélein, F. and Kouneiher, J. Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl, Adv. Theor. Math. Phys. Vol 8, N 3, 565601, (2004).
- Alekseevsky, D. V. and P. W. Michor, Differential geometry of Cartan connections, Publ. Math. Debrecen 47, 349-375, (1995).
- Cartan, E. Les espaces à connexion conforme, Ann. Soc. Pol. Math. 2, 171-221, (1923).
- Cartan, E. , Les groupes d'holonomie des espaces généralisés, Acta Math. 48, 142, (1926).
- Cartan, E. La Méthode du Repère Mobile, la Théorie des Groupes Continus et les Espaces Généralisés, Exposés de Géométrie No. 5, Hermann, Paris, (1935).
- Kobayashi, S. , On connections of Cartan, Canad. J. Math. 8, 145-156, (1956).
- Wise, D. K. MacDowell-Mansouri gravity and Cartan geometry, Class. Quant. Grav. 27, 155010 (2010). gr-qc0611154.
- Choquet-Bruhat Y. and DeWitt-Morette, C., Analysis, Manifolds, and Physics, rev. ed., North- Holland, Amsterdam, (1982).
- Goldstone, J. Salam, A. and Weinberg, S. Broken Symmetries. Physical Review 127 (3): 965970, (1962).
- Dubois-Violette, M and Madore J., Conservations Laws and integrability Conditions for Gravitational and Yang-Mills field Equations, Commun. Math. Phys. 108, 213-223 (1987).
- Ehresmann, C. Les connexions infinitésimales dans un espace fibré différentiable, in Colloque de topologie (espaces fibrés) tenu à Bruxelles du 5 au 8 juin 1950, Centre belge de recherche mathématique.
- Kahouadji, N. Construction of local conservation laws by generalized isometric embeddings of vector bundles, Asian J. Math. 15 (2011), no. 4, pp. 521-538 and in Integrable systems and quantum fields theories, eds. Baird, Hélein, Kouneiher and al, Hermann edition, 2008
- Hélein, F. Applications harmoniques, lois de conservation et repères mobiles, Diderot éditeur, 1996; second edition in English: Harmonic maps, conservation laws and moving frames, Cambridge Tracts in Mathematics 150, Cambridge University Press, (2002).
- Sternberg, S. Toronto Lectures on Physics, January 3, 2008
- Hélein, F. Manifolds obtained by soldering together points, lines, In Geometry, Topology, QFT and Cosmology, J. Kouneiher eds. Hermann, Paris, (2008)
- Thirring, W. Classical field theory, Berlin, Heidelberg, New York, Springer, (1979).
- Yang, C.N. and R.L. Mills, Phys. Rev. 96, 191, (1954).
- Dubois-Violette, M., Remarks on the local structure of Yang-Mills and Einsteins equations. Geom. Phys. 1, 139 (1984).
- Weinberg, S. A Model of Leptons. Physical Review Letters 19 (21): 12641266, (1967)
- Higgs, P.W. Broken Symmetries, Massless fields and Gauge Bosons, Phys. Lett. 12, 132 (1964).
- Kouneiher, J. and . Sidharth, B. G Mass Generation without Higgs Mechanism, DOI: 10.1007/s10773- 015-2542-1, (2015).
- Witten, E., A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381 (1981)