Academia.eduAcademia.edu

Outline

The role of ontologies and knowledge in Explainable AI

2024, Semantic web

https://doi.org/10.3233/SW-243529

References (13)

  1. S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J.M. Alonso-Moral, R. Confalonieri, R. Guidotti, J.D. Ser, N. Díaz-Rodríguez and F. Herrera, Explainable Artificial Intelligence (XAI): What we know and what is left to attain trustworthy artificial intelligence, Information Fusion (2023), 101805, https://www.sciencedirect.com/science/article/pii/S1566253523001148. doi:10.1016/j.inffus.2023.101805.
  2. S. Chari, O. Seneviratne, M. Ghalwash, S. Shirai, D.M. Gruen, P. Meyer, P. Chakraborty and D.L. McGuinness, Explanation ontology: A general-purpose, semantic representation for supporting user-centered explanations, Semantic Web Preprint (2023), 1-31, preprint. doi:10. 3233/SW-233282.
  3. G. Cima, F. Croce and M. Lenzerini, Separability and its approximations in ontology-based data management, Semantic Web Preprint (2023), 1-36, preprint. doi:10.3233/SW-233391.
  4. R. Confalonieri, L. Coba, B. Wagner and T.R. Besold, A historical perspective of Explainable Artificial Intelligence, WIREs Data Mining and Knowledge Discovery 11(1) (2021). doi:10.1002/widm.1391.
  5. R. Confalonieri, O. Kutz and D. Calvanese (eds), Proceedings of the Workshop on Data Meets Applied Ontologies in Explainable AI (DAO- XAI 2021), IAOA Series, Vol. 2998, CEUR-WS, 2021, Bratislava Knowledge September (BAKS 2021), Bratislava, Slovakia, September 18-19.
  6. E. Daga and P. Groth, Data journeys: Explaining AI workflows through abstraction, Semantic Web Preprint (2023), 1-27, preprint. doi:10. 3233/SW-233407.
  7. A.D. Garcez and L.C. Lamb, Neurosymbolic AI: The 3rd wave, Artificial Intelligence Review (2023). doi:10.1007/s10462-023-10448-w.
  8. M. Glauer, A. Memariani, F. Neuhaus, T. Mossakowski and J. Hastings, Interpretable ontology extension in chemistry, Semantic Web Preprint (2023), 1-22, preprint. doi:10.3233/SW-233183.
  9. R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti and D. Pedreschi, A survey of methods for explaining black box models, ACM Comp. Surv. 51(5) (2018), 1-42.
  10. H. Kautz, The third AI summer: AAAI Robert S. Engelmore memorial lecture, AI Magazine 43(1) (2022), 105-125, https://ojs.aaai.org/ aimagazine/index.php/aimagazine/article/view/19122. doi:10.1002/aaai.12036.
  11. J. Liartis, E. Dervakos, O. Menis-Mastromichalakis, A. Chortaras and G. Stamou, Searching for explanations of black-box classifiers in the space of semantic queries, Semantic Web Preprint (2023), 1-42, preprint. doi:10.3233/SW-233469.
  12. Parliament and Council of the European Union, General data protection regulation, 2016.
  13. J.C.L. Teze, J.N. Paredes, M.V. Martinez and G.I. Simari, Engineering user-centered explanations to query answers in ontology-driven socio-technical systems, Semantic Web Preprint (2023), 1-30, preprint. doi:10.3233/SW-233297.