Cylindrical Hardy inequalities on half-spaces
Electronic Journal of Differential Equations
Abstract
We study some versions of the cylindrical Hardy identities and inequalities in the style of Badiale-Tarantello [2]. We show that the best constants of the cylindrical Hardy inequalities can be improved when we consider functions on half-spaces. For more information see https://ejde.math.txstate.edu/Volumes/2020/75/abstr.html
References (46)
- Adimurthi; Chaudhuri, N.; Ramaswamy, M.; An improved Hardy-Sobolev inequality and its application. Proc. Amer. Math. Soc. 130 (2002), no. 2, 489-505.
- Badiale, M.; Tarantello, G.; A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics. Arch. Ration. Mech. Anal. 163 (2002), no. 4, 259- 293.
- Balinsky, A. A.; Evans, W. D.; Lewis, R. T.; The analysis and geometry of Hardy's inequality Universitext. Springer, Cham, 2015. xv+263 pp.
- Barbatis, G.; Filippas, S.; Tertikas, A.; A unified approach to improved L p Hardy inequalities with best constants. Trans. Amer. Math. Soc. 356 (2004), no. 6, 2169-2196.
- Benguria, R. D.; Frank, R. L.; Loss, M.; The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space. Math. Res. Lett. 15 (2008), no. 4, 613- 622.
- Brezis, H.; Marcus, M.; Hardy's inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 217-237 (1998).
- Brezis, H.; Marcus, M.; Shafrir, I.; Extremal functions for Hardy's inequality with weight. J. Funct. Anal. 171 (2000), no. 1, 177-191.
- Brezis, H.; Vázquez, J. L.; Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10, 1997, 443-469.
- Cazacu, C.; Zuazua, E.; Improved multipolar Hardy inequalities. Studies in phase space analysis with applications to PDEs, 35-52, Progr. Nonlinear Differential Equations Appl., 84, Birkhäuser/Springer, New York, 2013.
- D'Ambrosio, L.; Dipierro, S.; Hardy inequalities on Riemannian manifolds and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 3, 449-475.
- Dao, N. A.; Díaz, J. I.; Nguyen, Q.-H.; Generalized Gagliardo-Nirenberg inequalities us- ing Lorentz spaces, BMO, Hölder spaces and fractional Sobolev spaces. Nonlinear Anal. 173 (2018), 146-153.
- Devyver, B.; Pinchover, Y.; Psaradakis, G.; Optimal Hardy inequalities in cones. Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 1, 89-124.
- Duy, N. T.; Lam, N.; Triet, N.; Hardy and Rellich inequalities with exact missing terms on homogeneous groups. J. Math. Soc. Japan 71 (2019), no. 4, 1243-1256.
- Duy, N. T.; Lam, N.; Triet, N.; Hardy-Rellich identities with Bessel pairs. Arch. Math. (Basel) 113 (2019), no. 1, 95-112.
- Duy, N. T.; Lam, N.; Triet, N.; Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations. To appear in J. Spectr. Theory.
- Duy, N. T.; Lam, N.; Triet, N.; Yin, W.; Improved Hardy inequalities with exact remainder terms. To appear in Math. Inequal. Appl.
- Duy, N. T.; Phi, L. L.; Cylindrical Hardy type inequalities with Bessel pairs. To appear in Oper. Matrices.
- Filippas, S.; Maz'ya, V.; Tertikas, A.; Critical Hardy-Sobolev inequalities. J. Math. Pures Appl. (9) 87 (2007), no. 1, 37-56.
- Filippas, S.; Psaradakis, G.; The Hardy-Morrey & Hardy-John-Nirenberg inequalities involv- ing distance to the boundary. J. Differential Equations 261 (2016), no. 6, 3107-3136.
- Frank, R. L.; Seiringer, R.; Non-linear ground state representations and sharp Hardy inequal- ities. J. Funct. Anal. 255 (2008), no. 12, 3407-3430.
- Gazzola, F.; Grunau, H.-C.; Mitidieri, E.; Hardy inequalities with optimal constants and remainder terms. Trans. Amer. Math. Soc. 356 (2004), no. 6, 2149-2168.
- Gesztesy, F.; Littlejohn, L. L.; Factorizations and Hardy-Rellich-type inequalities. Non-linear partial differential equations, mathematical physics, and stochastic analysis, 207-226, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2018.
- Gesztesy, F.; Littlejohn, L.; Michael, I.; Pang, M.; Radial and logarithmic refinements of Hardy's inequality. Reprinted in St. Petersburg Math. J. 30 (2019), no. 3, 429-436. Algebra i Analiz 30 (2018), no. 3, 55-65.
- Ghoussoub, N.; Moradifam, A.; Bessel pairs and optimal Hardy and Hardy-Rellich inequali- ties. Math. Ann. 349 (2011), no. 1, 1-57.
- Ghoussoub, N.; Moradifam, A.; Functional inequalities: new perspectives and new applica- tions. Mathematical Surveys and Monographs, 187. American Mathematical Society, Provi- dence, RI, 2013. xxiv+299.
- Goldstein, J. A.; Kombe, I.; Yener, A.; A unified approach to weighted Hardy type inequalities on Carnot groups. Discrete Contin. Dyn. Syst. 37 (2017), no. 4, 2009-2021.
- Ioku, N.; Ishiwata, M.; Ozawa, T.; Sharp remainder of a critical Hardy inequality. Arch. Math. (Basel) 106 (2016), no. 1, 65-71.
- Kufner, A.; Maligranda, L.; Persson, L.-E.; The Hardy Inequality. About its History and Some Related Results. Vydavatelský Servis, Pilsen, 2007.
- Kufner, A.; Persson, L.-E.; Samko, N.; Weighted inequalities of Hardy type Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. xx+459 pp.
- Lam, N.; A note on Hardy inequalities on homogeneous groups. Potential Anal. 51 (2019), no. 3, 425-435.
- Lam, N.; Hardy and Hardy-Rellich type inequalities with Bessel pairs. Ann. Acad. Sci. Fenn. Math. 43 (2018), 211-223.
- Lam, N.; Lu, G.; Zhang, L.; Factorizations and Hardy's type identities and inequalities on upper half spaces. Calc. Var. Partial Differential Equations 58 (2019), no. 6, Paper No. 183, 31 pp.
- Lam, N.; Lu, G.; Zhang, L.; Geometric Hardy's inequalities with general distance functions. J. Funct. Anal. 279 (2020), no. 8, 108673.
- Lu, G.; Yang, Q.; Paneitz operators on hyperbolic spaces and high order Hardy-Sobolev- Maz'ya inequalities on half spaces. Amer. J. Math. 141 (2019), no. 6, 1777-1816.
- Lu, G.; Yang, Q.; Green's functions of Paneitz and GJMS operators on hyperbolic spaces and sharp Hardy-Sobolev-Maz'ya inequalities on half spaces. https: //arxiv.org/abs/1903.10365.
- Maz'ya, V.; Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften [Funda- mental Principles of Mathematical Sciences], 342. Springer, Heidelberg, 2011. xxviii+866 pp.
- Mitidieri, È.; A simple approach to Hardy inequalities. (Russian) Mat. Zametki 67 (2000), no. 4, 563-572; translation in Math. Notes 67 (2000), no. 3-4, 479-486
- Nazarov, A. I.; Hardy-Sobolev inequalities in a cone. J. Math. Sci. 132(4), 419-427 (2006)
- Nguyen, V. H.; New sharp Hardy and Rellich type inequalities on Cartan-Hadamard manifolds and their improvements. Proc. Roy. Soc. Edinburgh Sect. A, 1-30. doi: 10.1017/prm.2019.37
- Opic, B.; Kufner, A.; Hardy-type inequalities. Pitman Research Notes in Mathematics Series, 219. Longman Scientific & Technical, Harlow, 1990. xii+333 pp.
- Ruzhansky, M.; Sabitbek, B.; Suragan, D.; Subelliptic geometric Hardy type inequalities on half-spaces and convex domains. https: //arxiv.org/abs/1806.06226, to appear in Ann. Funct. Anal.
- Ruzhansky, M.; Suragan, D.; Hardy inequalities on homogeneous groups. Progress in Math., Vol. 327, Birkhäuser, 2019. 588pp.
- Sano, M.; Takahashi, F.; Scale invariance structures of the critical and the subcritical Hardy inequalities and their improvements. Calc. Var. Partial Differential Equations 56 (2017), no. 3, Art. 69, 14 pp.
- Secchi, S.; Smets, D.; Willem, M.; Remarks on a Hardy-Sobolev inequality. C. R. Math. Acad. Sci. Paris 336 (2003), no. 10, 811-815.
- Vázquez, J. L.; Zuazua, E.; The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173 (2000), no. 1, 103-153.
- Wang, Z.-Q.; Zhu, M.; Hardy inequalities with boundary terms. Electron. J. Differential Equations, 2003 (2003), No. 43, 8 pp.