A note on Hardy's inequalities with boundary singularities
2010
Abstract
Let Ω be a smooth bounded domain in R N with N ≥ 1. In this paper we study the Hardy-Poincaré inequalities with weight function singular at the boundary of Ω. In particular we give sufficient conditions so that the best constant is achieved.
References (22)
- Barbatis G., Filippas S., Tertikas A., A unified approach to improved L p Hardy inequalities with best constants . Trans. Amer. Math. Soc., 356, (2004), 2169-2196.
- Brezis H. and Marcus M., Hardy's inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 217-237.
- Brezis H. and Vàzquez J. L., Blow-up solutions of some nonlinear elliptic prob- lems. Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443-469.
- Brezis H. and Lieb E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
- Caldiroli P., Musina R., On a class of 2-dimensional singular elliptic problems. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 479-497.
- Caldiroli P., Musina R., Stationary states for a two-dimensional singular Schrödinger equation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4-B (2001), 609-633.
- Valeriola S. and Willem M., On Some Quasilinear Critical Problems, Ad- vanced Nonlinear Studies 9 (2009), 825-836.
- Davies E. B., The Hardy constant, Quart. J. Math. Oxford (2) 46 (1995), 417- 431.
- Fall M. M., Area-minimizing regions with small volume in Riemannian manifolds with boundary. Pacific J. Math. 244 (2010), no. 2, 235-260.
- Fall M. M., Musina R., Hardy-Poincaré inequalities with boundary singularities. Prépublication Département de Mathématique Université Catholique de Louvain- La-Neuve 364 (2010), http://www.uclouvain.be/38324.html.
- Fall M. M., Musina R., Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials. Prerint SISSA (2010). Ref. 31/2010/M.
- Filippas S., Maz'ya V. and Tertikas A., Critical Hardy-Sobolev inequalities. Journal de Mathématiques Pures et Appliqués Volume 87, Issue 1, 2007, 37-56.
- Gazzola F., Grunau H. C., Mitidieri E., Hardy inequalities with optimal con- stants and remainder terms, Trans. Amer. Math. Soc. 356, 2004, 2149-2168.
- Ghoussoub N., Kang X.S., Hardy-Sobolev critical elliptic equations with bound- ary singularities. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 6, 767-793.
- Opic B. and Kufner A., "Hardy-type Inequalities", Pitman Research Notes in Math., Vol. 219, Longman 1990.
- Gilbarg D. and Trudinger N.S., Elliptic partial differential equations of second order. 2 nd edition, Grundlehren 224, Springer, Berlin-Heidelberg-New York-Tokyo (1983).
- Lindqvist P., On the equation div(|∇u| p-2 ∇u) + λ|u| p-2 u = 0, Proc. Amer. Math. Soc., 109(1) (1990), 157164. Addendum, ibiden, 116 (2) (1992), 583-584.
- Marcus M., Mizel V.J., and Pinchover Y., Transactions of the American Math- ematical Socity. Volume 350, Number 8, August 1998, 3237-3255.
- Nazarov A. I., Hardy-Sobolev Inequalities in a cone, J. Math. Sciences, 132, (2006), (4), 419-427.
- Nazarov A.I., Dirichlet and Neumann problems to critical Emden-Fowler type equations. J Glob Optim (2008) 40, 289-303.
- Pinchover Y., Tintarev K., Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality. Indiana Univ. Math. J. 54 (2005), 1061-1074.
- Tidblom J., A geometrical version of Hardy's inequality for W1,p (Ω), Proc. Amer. Math. Soc. 132 (2004) 2265-2271.