Academia.eduAcademia.edu

Outline

A note on Hardy's inequalities with boundary singularities

2010

Abstract

Let Ω be a smooth bounded domain in R N with N ≥ 1. In this paper we study the Hardy-Poincaré inequalities with weight function singular at the boundary of Ω. In particular we give sufficient conditions so that the best constant is achieved.

References (22)

  1. Barbatis G., Filippas S., Tertikas A., A unified approach to improved L p Hardy inequalities with best constants . Trans. Amer. Math. Soc., 356, (2004), 2169-2196.
  2. Brezis H. and Marcus M., Hardy's inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 217-237.
  3. Brezis H. and Vàzquez J. L., Blow-up solutions of some nonlinear elliptic prob- lems. Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443-469.
  4. Brezis H. and Lieb E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
  5. Caldiroli P., Musina R., On a class of 2-dimensional singular elliptic problems. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 479-497.
  6. Caldiroli P., Musina R., Stationary states for a two-dimensional singular Schrödinger equation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4-B (2001), 609-633.
  7. Valeriola S. and Willem M., On Some Quasilinear Critical Problems, Ad- vanced Nonlinear Studies 9 (2009), 825-836.
  8. Davies E. B., The Hardy constant, Quart. J. Math. Oxford (2) 46 (1995), 417- 431.
  9. Fall M. M., Area-minimizing regions with small volume in Riemannian manifolds with boundary. Pacific J. Math. 244 (2010), no. 2, 235-260.
  10. Fall M. M., Musina R., Hardy-Poincaré inequalities with boundary singularities. Prépublication Département de Mathématique Université Catholique de Louvain- La-Neuve 364 (2010), http://www.uclouvain.be/38324.html.
  11. Fall M. M., Musina R., Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials. Prerint SISSA (2010). Ref. 31/2010/M.
  12. Filippas S., Maz'ya V. and Tertikas A., Critical Hardy-Sobolev inequalities. Journal de Mathématiques Pures et Appliqués Volume 87, Issue 1, 2007, 37-56.
  13. Gazzola F., Grunau H. C., Mitidieri E., Hardy inequalities with optimal con- stants and remainder terms, Trans. Amer. Math. Soc. 356, 2004, 2149-2168.
  14. Ghoussoub N., Kang X.S., Hardy-Sobolev critical elliptic equations with bound- ary singularities. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 6, 767-793.
  15. Opic B. and Kufner A., "Hardy-type Inequalities", Pitman Research Notes in Math., Vol. 219, Longman 1990.
  16. Gilbarg D. and Trudinger N.S., Elliptic partial differential equations of second order. 2 nd edition, Grundlehren 224, Springer, Berlin-Heidelberg-New York-Tokyo (1983).
  17. Lindqvist P., On the equation div(|∇u| p-2 ∇u) + λ|u| p-2 u = 0, Proc. Amer. Math. Soc., 109(1) (1990), 157164. Addendum, ibiden, 116 (2) (1992), 583-584.
  18. Marcus M., Mizel V.J., and Pinchover Y., Transactions of the American Math- ematical Socity. Volume 350, Number 8, August 1998, 3237-3255.
  19. Nazarov A. I., Hardy-Sobolev Inequalities in a cone, J. Math. Sciences, 132, (2006), (4), 419-427.
  20. Nazarov A.I., Dirichlet and Neumann problems to critical Emden-Fowler type equations. J Glob Optim (2008) 40, 289-303.
  21. Pinchover Y., Tintarev K., Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality. Indiana Univ. Math. J. 54 (2005), 1061-1074.
  22. Tidblom J., A geometrical version of Hardy's inequality for W1,p (Ω), Proc. Amer. Math. Soc. 132 (2004) 2265-2271.