Foundations of Fluid Mechanics with Applications
2017, Modern Birkhäuser classics
https://doi.org/10.1007/978-3-319-66149-0Abstract
Library of Congress Cataloging-in-Publication Data Kiselev, S.P. (Sergey Petrovich) Foundations of fluid mechanics with applications : problem solving using Mathematica / Sergey P. Kiselev, Evgenii V. Vorozhtsov, Vasily M. Fomin. p. em. (Modeling and simulation in science, engineering and technology) Includes bibliographical references and index.
References (158)
- Sedov, L.I., Continuum Mechanics, Vol. 1 (in Russian), Fifth Edition, Nauka, Moscow, 1994.
- Sokolnikov, I., Tensor Analysis (Theory and Applications in Geometry and in Continuum Mechanics (in Russian), Nauka, Moscow, 1971.
- McConnell, A.J ., Application of Tensor Analysis, Dover Pub- lications Inc., New York, 1957.
- Rashevskii, P.K., The Riemann Geometry and Tensor Analysis (in Russian), Nauka, Moscow, 1967.
- Ilyushin, A.A., Continuum Mechanics (in Russian), Moscow State University, Moscow, 1990.
- Germain, P., Cours de Mecanique des Milieux Continus. Tome I. Theorie Generate, Masson et cie' Editeurs, Paris, 1973.
- Smirnov, V.I., A Course of Higher Mathematics (in Russian), Vol. 3, Pt. 1, Nauka, Moscow, 1967.
- Godunov, S.K., Elements of Continuum Mechanics (in Rus- sian), Nauka, Moscow, 1978.
- Eringen, A.C., Mechanics of Continua, John Wiley and Sons, Inc., New York, 1967.
- Mindlin, R.D., Micro-structure in linear plasticity, Archive of Rational Mechanics and Analysis, 1:51, 1964.
- Palmov, V.A., Basic equations of the nonsymmetric elastic- ity, Prikladnaya Matematika i Mekhanika (in Russian), 28(3):401, 1964.
- Cosserat, E. and Cosserat, F., Theorie des corps deformables, Hermann, Paris, 1909.
- Uhlenbeck, G.E. and Ford, G.W., Lectures in Statistical Me- chanics, American Mathematical Society, Providence, Rhode Is- land, 1963.
- Hirshfelder, J.O., Curtiss, C.F., and Bird, R.B., The Molecular Theory of Gases and Liquids, John Wiley and Sons, Inc., New York, 1954.
- Sedov, L.I., Continuum Mechanics, Vol. 1 (in Russian), Fifth Edition, Nauka, Moscow, 1994.
- Nicolis, G. and Prigogine, I., Exploring Complexity: An In- troduction, W.H. Freeman and Company, New York, 1989.
- Nicolis, J .S., Dynamics of Hierarchical Systems. An Evolution- ary Approach, Springer-Verlag, Berlin, 1986.
- Ilyushin, A.A., Continuum Mechanics (in Russian), Moscow State University, Moscow, 1990.
- Landau, L.D. and Lifschitz, E.M., Statistical Physics, Pt. I (in Russian), Nauka, Moscow, 1976.
- Goldstein, H., Classical Mechanics, Addison-Wesley, Cam- bridge, Massachusetts, 1950.
- Lanszos, C., The Variational Principles of Mechanics, Univ. Toronto Press, 1949.
- Leech, J.W., Classical Mechanics, John Wiley and Sons, Inc., New York, 1958.
- Berdichevskii, V.L., Variational Principles of Continuum Me- chanics (in Russian), Nauka, Moscow, 1983.
- Landau, L.D. and Lifschitz, E.M., Field Theory (in Russian), Vol. 2, Nauka, Moscow, 1988.
- Logunov, A.A., Lectures on the Theories of Relativity and Gravitation (Up-to-Date Analysis of the Problem) (in Russian), Vol. 2, Nauka, Moscow, 1988.
- Eshelby, J.D., Continual Theory of Defects, Solid State Phys., Vol. 3, p. 79, 1956.
- Warsi, Z.U.A., Fluid Dynamics. Theoretical and Computatio- nal Approaches, CRC Press, Boca Raton, 1993.
- Landau, L.D. and Lifschitz, E.M., Elasticity Theory (in Rus- sian), Nauka, Moscow, 1987.
- Ovsyannikov, L.V., The Group Analysis of Differential Equa- tions (in Russian), Nauka, Moscow, 1978.
- Richtmyer, R.D., Principles of Advanced Mathematical Phys- ics, Vol. 2, Springer-Verlag, New York, 1978. References
- Sedov, L.I., Similarity and Dimensional Methods in Mechan- ics (in Russian), Ninth Edition, Nauka, Moscow, 1987 [English translation made by A.G. Volkovets: Sedov, L.I., Similarity and Dimensional Methods in Mechanics, CRC Press, Boca Ra- ton, 1993].
- Birkhoff, G., Hydrodynamics. A Study in Logic, Fact and Simil- itude, Princeton University Press, Princeton, 1960.
- Ovsyannikov, L.V., Lectures on the Fundamentals of Gas Dy- namics (in Russian), Nauka, Moscow, 1981.
- Landau, L.D. and Lifschitz, E.M., Hydrodynamics (in Rus- sian), Nauka, Moscow, 1986.
- Smirnov, V.I., A Course of Higher Mathematics, Vol. IV, Birk- hauser Verlag, Basel and Stuttgart, 1961.
- Chorin, A.J. and Marsden, J .E., Mathematical Introduction to Fluid Mechanics. Second Edition, Springer-Verlag, New York, 1990.
- Godunov, S.K., Equations of the Mathematical Physics (in Russian), Nauka, Moscow, 1979.
- Rozdestvenskii, B.L. and Janenko, N.N., Systems of Quasi- linear Equations and Their Applications to Gas Dynamics. Sec- ond Edition (in Russian), Nauka, Moscow, 1978. English transl.: Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translations of Mathematical Monographs, Vol. 55, American Mathematical Society, Providence, Rhode Island, 1983. References
- Kochin, N.E., Kibel, I.A., and Rose, N.V., Theoretical Hydromechanics (in Russian), Vol. I, 6th Edition; Vol. II, 4th Edition, Fizmatgiz, Moscow, 1963.
- Milne-Thompson, L.M., Theoretical Hydrodynamics, 5th Edi- tion, MacMillan, New York, 1967.
- Gromeka, I.S., Some Cases of Incompressible Fluid Flow (in Russian), Kazan, 1881 (Reprinted in: Gromeka, I.S., Collected Works (in Russian), USSR Academy of Sciences, Moscow, 1952, p. 76.
- Lamb, H., Hydrodynamics, 6th Edition, Cambridge University Press, London, 1932; Dover Publications, New York, 1945.
- Germain, P., Cours de Mecanique des Milieux Continus. Tome I. Theorie Generale, Masson et cie' Editeurs, Paris, 1973.
- Sedov, L.I., Continuum Mechanics, Vols. I and II (in Russian), Fifth Edition, Nauka, Moscow, 1994.
- Kirchhoff, G.R., Mechanics (in Russian; translated from Ger- man), USSR Academy of Sciences, Moscow, 1962.
- Sedov, L.I., Planar Problems of Hydrodynamics and Aerody- namics (in Russian), Second Edition, Nauka, Moscow, 1966.
- Vallander, S.V., Lectures in Hydroaeromechanics (in Russian), Leningrad State University, Leningrad, 1978.
- Warsi, Z.U.A., Fluid Dynamics. Theoretical and Computatio- nal Approaches, CRC Press, Boca Raton, 1993.
- Batchelor, G.K., An Introduction to Fluid Dynamics, Cam- bridge University Press, London, 1967.
- Fletcher, C.A.J., Computational Techniques for Fluid Dynam- ics, Vols. I, II, 3rd Edition, Springer-Verlag, Berlin, 1996.
- Strampp, W., Ganzha, V., and Vorozhtsov, E., Hohere Mathematik mit Mathematica. Band 3: Differentialgleichungen und Numerik, Verlag Vieweg, Braunschweig/Wiesbaden, 1997. References
- Kochin, N.E., Kibel, I.A., and Rose, N.V., Theoretical Hydromechanics (in Russian), Vol. II, 4th Edition, Fizmatgiz, Moscow, 1963.
- Birkhoff, G., Hydrodynamics. A Study in Logic, Fact and Simil- itude, Second Edition, Princeton University Press, Princeton, NJ, 1960.
- Prandtl, L., The Mechanics of Viscous Fluids. Vol. III, Aero- dynamic Theory, Springer, Berlin, 1935.
- Prandtl, L. and Tietjens, O.G., Applied Hydro-and Aerome- chanics (Translated from the German edition, Springer, Berlin, 1931), McGraw-Hill, New York, 1934.
- Schlichting, H., Boundary Layer Theory, Seventh Edition, McGraw-Hill, New York, 1979.
- Loitsyanskii, L.G., Mechanics of Liquids and Gases, Pergamon Press, Oxford, 1966.
- Mises, R., Bemerkungen zur Hydrodynamik, Zeitschrift fiir angewandte Mathematik und Mechanik, 7:425, 1927.
- Strampp, W., Ganzha, V., and Vorozhtsov, E., Hohere Mathematik mit Mathematica. Band 3: Differentialgleichungen und Numerik, Verlag Vieweg, Braunschweig/Wiesbaden, 1997.
- Lin, C.C., The Theory of Hydrodynamic Stability, University Press, Cambridge, 1955.
- Landau, L.D. and Lifschitz, E.M., Hydrodynamics (in Rus- sian), Nauka, Moscow, 1986.
- Swinney, H.L. and Gollub, J.P. (Editors), Hydrodynamic In- stabilities and the Transition to Turbulence, Vol. 45, Springer- Verlag, Berlin, 1981.
- Ruelle, D. and Takens, F., On the nature of turbulence, Com- munications on Mathematical Physics, 20:167, 1971; 23:343, 1971.
- Feigenbaum, M.J., Universality in the behavior of nonlinear systems, Uspekhi Fizicheskikh Nauk (in Russian), 141:343, 1983 [translated from the Los Alamos Science (Summer 1980)], p. 4.
- Lorenz, E.N., Deterministic nonperiodic flow, J. Atmos. Sci., 20:130, 1963.
- Libby, P.A. and Williams, F. (Editors), Turbulent Reacting Flows, Topics in Applied Physics, vol. 44, Springer-Verlag, Ber- lin, 1980.
- Bradshaw, P. (Editor), Turbulence, Second Edition, Topics in Applied Physics, Vol. 12, Springer-Verlag, Berlin, 1978.
- Monin, A.S. and Yaglom, A.M., Statistical Fluid Mechanics, Vols. I and II, MIT Press, Cambridge, MA, 1971.
- Hinze, J.O., Turbulence, an Introduction to Its Mechanism and Theory, McGraw-Hill, New York, 1959.
- Vallander, S.V., Lectures in Hydroaeromechanics (in Russian), Leningrad State University, Leningrad, 1978.
- Loitsyanskii, L.G., Mechanics of Liquids and Gases, Pergamon Press, Oxford, 1966.
- Laval, P., Time-dependent calculation method for transonic noz- zle flows, Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, September 15-19, 1970, University of California, Berkeley/ Ed. M. Holt. Lecture Notes in Physics, Vol. 8. Springer-Verlag, Berlin, 1971, p. 187.
- Ganzha, V.G. and Vorozhtsov, E.V., Numerical Solutions for Partial Differential Equations: Problem Solving Using Math- ematica, CRC Press, Boca Raton, 1996.
- Landau, L.D. and Lifschitz, E.M., Hydrodynamics (in Rus- sian), Nauka, Moscow, 1986.
- Sedov, L.I., Continuum Mechanics, Vols. I and II (in Russian), Fifth Edition, Nauka, Moscow, 1994.
- Kochin, N.E., Kibei, I.A., and Rose, N.V., Theoretical Hydromechanics (in Russian), Vol. II, 4th Edition, Fizmatgiz, Moscow, 1963.
- Ovsyannikov, L.V., Lectures on the Fundamentals of Gas Dy- namics (in Russian), Nauka, Moscow, 1981.
- Rozdestvenskii, B.L. and Janenko, N.N., Systems of Quasi- linear Equations and Their Applications to Gas Dynamics. Sec- ond Edition (in Russian), Nauka, Moscow, 1978. [English transl.: Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translations of Mathematical Monographs, Vol. 55 (American Mathematical Society, Providence, Rhode Island, 1983)].
- Stanyukovich, K.P., Transient Motions of Continuum (in Rus- sian), Nauka, Moscow, 1971.
- Chaplygin, S.A., On gas jets, Uchenye Zapiski MGU, otd. jisico-matematicheskih nauk (in Russian), Vol. 24, Moscow, 1904.
- Chernyi, G.G., Gas Dynamics (in Russian), Nauka, Moscow, 1988.
- Dombrovskii, G.N., Method for the Adiabat Approximation in the Theory of Planar Gas Motions (in Russian), Nauka, Moscow, 1964.
- Mises von R., Mathematical Theory of Compressible Fluid Flow, Academic Press, New York, 1958.
- Courant, R., and Friedrichs, K.O., Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, 1948.
- Ben-Dor, G., Shock Wave Reflection Phenomena, Springer- Verlag, New York, Berlin, 1992.
- Ferri, A., Elements of Aerodynamics of Supersonic Flows, Mac- Millan, New York, 1949.
- Liepmann, H.W., and Roshko, A., Elements of Gas Dynam- ics, John Wiley and Sons, Inc., New York, 1957.
- Fomin, V.M. et al., Experimental investigation of a transition to Mach reflection of stationary shock waves, Doklady Rossiyskoi Akademii Nauk (in Russian), Vol. 357:623, 1997.
- Maikapar, G.I., On the wave drag of asymmetric bodies in su- personic flow, Prikladnaya Matematika i Mekhanika (in Russian), Vol. 23:376, 1959.
- Shchepanovskii, V.A., Gasdynamic Design (in Russian), Na- uka, Novosibirsk, 1991.
- Shchepanovskii, V.A. and Gutov, B.I., Gasdynamic Design of Supersonic Inlets (in Russian), Nauka, Novosibirsk, 1993. References
- Rakhmatulin, Kh.A., The fundamentals of gas dynamics of interpenetrating motions of compressible media, Prikladnaya Ma- tematika i Mekhanika (in Russian), 20(2):184, 1956.
- Kraiko, A.N., Nigmatulin, R.I., Starkov, V.K., and Ster- nin, L.E., Mechanics of multiphase media, Itogi nauki i tehniki. Ser. Gidromekhanika (in Russian), Vol. 6, Nauka, Moscow, 1972.
- Nigmatulin, R.I., The Fundamentals of the Mechanics of Het- erogeneous Media (in Russian), Nauka, Moscow, 1978.
- Nigmatulin, R.I., The Dynamics of the Multiphase Media (in Russian), Part 1, Nauka, Moscow, 1987.
- Nigmatulin, R.I., The Dynamics of the Multiphase Media (in Russian), Part 2, Nauka, Moscow, 1987.
- Nikolaevskii, V.N. et al., The Mechanics of Saturated Porous Media (in Russian), Nedra, Moscow, 1970.
- Yanenko, N.N., Soloukhin, R.I., Papyrin, A.N., and Fomin, V.M., Supersonic Two-Phase Flows under the Condi- tions of Velocity Nonequilibr-ium of Particles (in Russian), Nauka, Novosibirsk, 1980.
- Kiselev, S.P., Ruev, G.A., Thunev, A.P., Fomin, V.M., and Shavaliev, M.Sh., Shockwave Processes in Two- Component and Two-Phase Media (in Russian), Nauka, Novosi- birsk, 1992.
- Panton, P., Flow properties from the continuum viewpoint of a nonequilibrium gas-particle mixture, J. Fluid Mechanics, 31(2):273, 1968.
- Henderson, C.B., Drag coefficient of spheres in continuum and rarefied flows, AIAA J., 14(6):707, 1967.
- Carlson, D.I. and Hogland, R.F., Particle drag and heat transfer in rocket nozzles, AIAA J., 2(11):1980, 1964.
- Boiko, V.M. et al., Shock wave interaction with a cloud of particles, Shock Waves, 7:275, 1997.
- Kraiko, A.N. and Sternin, L.E., Theory of flows of a two- velocity continuous medium containing solid or liquid particles, Pr-ikladnaya Matematika i Mekhanika (in Russian), 29(3):418, 1965. (English transl. in: J. Appl. Math. Mechanics (PMM), 29(3):482, 1965).
- Klebonov, L.A., Kroshilin, A.E., Nigmatulin, B.I., and Nigmatulin, R.I., On the hyperbolicity, stability and correct- ness of the Cauchy problem for the system of equations of two- velocity motion of two-phase media, Prikladnaya Matematika i Mekhanika (in Russian), 46(1):83, 1982.
- Kraiko, A.N ., On the correctness of the Cauchy problem for a two-liquid flow model of a gas-particle mixture, Prikladnaya Matematika i Mekhanika (in Russian), 46(3):420, 1982.
- Kliegel, J .R. and Nickerson, G.R., Flow of gas-particle mix- tures in axially symmetric nozzles, in Detonation and Two-Phase Flow. Progress in Astronautics and Rocketry, Vol. 6/Eds. S.S. Penner and F.A. Williams, Academic Press, New York, 1962, p. 173.
- Kiselev, S.P. and Fomin, V.M., A continual/discrete model for the gas-particle mixture at a small volume concentration of particles, Zhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki (in Russian), 2:93, 1986.
- Lavrentyev, M.M., Romanov, V.G., and Shishatskii, S.P., Ill-Posed Problems of the Mathematical Physics and Anal- ysis (in Russian), Nauka, Moscow, 1980.
- Myasnikov, V.P., On the dynamic motion equations of two- component systems, Zhurnal Prikladnoi Mekhaniki i Tehnich- eskoi Fiziki (in Russian), 2, 58, 1967.
- Goldshtik, M.A. and Kozlov, B.M., The elementary theory of the condensed disperse systems, Zhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki (in Russian), 4:89, 1973.
- Bird, G.A., Molecular Gas Dynamics, Clarendon Press, Oxford, 1976.
- Volkov, A. and Tsirkunov, Yu., Direct simulation Monte- Carlo modelling of two-phase gas-solid particle flows with inelas- tic particle-particle collisions, in Proc. 3rd ECCOMAS Com- putational Fluid Dynamics Conf., 9-13 September 1996, Paris, France, John Wiley and Sons, Inc., New York, 1996, p. 662.
- Kiselev, S.P. and Fomin, V.M., The relations at a com- bined discontinuity in gas with solid particles, Zhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki (in Russian), 2:112, 1984.
- Sternin, L.E., The Fundamentals of the Gas Dynamics of Two-Phase Nozzle Flows (in Russian), Mashinostroenie, Moscow, 1974.
- Kliegel, J .R., Gas particle nozzle flows, Ninth Symposium (In- ternational) on Combustion, Academic Press, New York, 1963, p. 811.
- Kogan, M.N., Rarefied Gas Dynamics (in Russian), Nauka, Moscow, 1967.
- Zeldovich, Ya.B. and Myshkis, A.D., The Elements of the Mathematical Physics (in Russian), Nauka, Moscow, 1973.
- Zeldovich, Ya.B., Selected Works. Particles, Kernels, the Uni- verse (in Russian), Nauka, Moscow, 1985.
- Arnold, V.I., Catastrophe Theory (in Russian), Nauka, Moscow, 1990.
- Kiselev, S.P. and Kiselev, V.P., On the interaction of a shock wave with a cloud of particles with perturbed boundaries, Zhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki (in Russian), 37(4):36, 1996.
- Kuhl, A.L., Reichenbach, H., and Ferguson, R.E., Shock interaction with a dense-gas wall layer. In: Shock Waves Proc., Vol. 1 /Ed. K. Takayama, Sendai, Japan, 1991.
- Boiko, V.M., The Investigation of the Dynamics of Acceler- ation, Breakdown, and Ignition of Particles Behind the Shock Waves by the Methods of Laser Visualization, a summary of The- sis (in Russian), Novosibirsk, 1984.
- Kiselev, S.P. and Kiselev, V.P., On the ignition of coal dust particles in shock waves, Prikladnaya M ekhanika i Tehnicheskaya Fizika (in Russian), 36(3):31, 1995.
- Kiselev, S.P. and Kiselev, V.P., On some peculiarities of gas flow arising as a result ofthe shock wave interaction with a cloud of particles, Prikladnaya Mekhanika i Tehnicheskaya Fizika (in Russian), 36(2), 8, 1995.
- Fomin, V.M. et al., On some peculiarities of gas flow arising at the shock wave interaction with a cloud of particles, Doklady Rossiiskoi Akademii Nauk (in Russian), 340(2):8, 1995.
- Landau, L.D. and Lifschitz, E.M., Hydrodynamics (in Rus- sian), Nauka, Moscow, 1986.
- Landau, L.D. and Lifschitz, E.M., Statistical Physics (in Russian), Part 1, Nauka, Moscow, 1976.
- Larson, R.G. and Hirasaki, G.J., Analysis of the physical mechanisms in surfactant flooding, Soc. Petroleum Eng. J., 18(1):42, 1978.
- Larson, R.G., Davis, H.T., and Scriven, L.E., Displace- ment of residual nonwetting fluid from porous media, Chem. Eng. Sci., 18:75, 1980.
- Davis, S.A. and Jones, S.C., Displacement mechanism of mi- cellar solution, J. Petroleum Technol., 20:1415, 1968.
- Chernyi, I.A., Soil Hydrogasdynamics (in Russian), Gostopte- hizdat, Moscow, 1963.
- Barenblatt, G.I., Entov, V.M., and Ryzhik, V.M., The Motion of Liquids and Gases in Natural Seams (in Russian), Ne- dra, Moscow, 1984.
- Kiselev, S.P., Continuum Mechanics (in Russian), Novosibirsk State Technical University, Novosibirsk, 1997.
- Nakoryakov, V.E., Sobolev, V.V., and Schreiber, I.R., Long wavelength disturbances in a gas-liquid mixture, Izvestiya AN SSSR, Mekhanika Zhidkosti i Gaza (in Russian), 5:71, 1972.
- Wijngaarden, L. van, One-dimensional flow of liquids contain- ing small gas bubbles, Annu. Rev. Fluid Mechanics, Vol. 4:369, 1972.
- Kutateladze, S.S. and Nakoryakov, V.E., Heat and Mass Transfer and the Waves in Gas-Liquid Systems (in Russian), Nauka, Novosibirsk, 1984.
- Karpman, V.I., Nonlinear Waves in Disperse Media (in Rus- sian), Nauka, Moscow, 1973.
- Zakharov, V.E. et al., The Theory of Solitons (in Russian), Nauka, Moscow, 1980.
- Zabusky, N.J., and Kruskal, M.D., Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15:240, 1965.
- Sagdeev, R.Z., On nonlinear motions of rarefied plasma in the magnetic field, in Physics of Plasma and the Problem of Con- trolled Thermonuclear Reactions (in Russian), Vol. 4, USSR Aca- demy of Sciences, Novosibirsk, 1958, p. 384.
- Nigmatulin, R.I., Ivandaev, A. I., Nigmatulin, B. I., and Milashenko, V.I., Nonstationary wave processes in the gas/vapor/liquid mixtures, in Nonlinear Wave Processes in Two- Phase Media (in Russian), Institute of Thermophysics of the USSR Academy of Sciences, Novosibirsk, 1977, p. 80.
- Berezin, Y.A., Modeling of Nonlinear Wave Processes (in Rus- sian), Nauka, Novosibirsk, 1982.
- Richtmyer, R.D. and Morton, K.W., Difference Methods for Initial-Value Problems, Second Edition, Interscience Publishers, New York, 1967.
- ListPlot[{yl, y2, ... }] plotsalistofvalues. Thexcoordinates for each point are taken to be 1, 2, ....
- ListPlot[{{x1, y1}, {x2, y2}, ... }] plots a list of values with specified x and y coordinates. Options[ListPlot] = {AspectRatio-> GoldenRatio(-l), Axes-> Automatic, AxesLabel->None, AxesOrigin -> Automatic, AxesStyle -> Automatic, Background -> Automatic, ColorOutput -> Automatic, DefaultColor-> Automatic, Epilog-> {}, Frame -> False, FrameLabel -> None, FrameStyle->Automatic, FrameTicks->Automatic, GridLines -> None, ImageSize -> Automatic, PlotJoined -> False, PlotLabel -> None, PlotRange -> Automatic, PlotRegion -> Automatic, PlotStyle->Automatic, Prolog-> {}, RotateLabel -> True, Ticks -> Automatic, DefaultFont: >$DefaultFont, Display Function: >$Display Function, Format Type: >$FormatType, TextStyle: >$TextStyle} [see also Fig. A.5 (b)].
- Example 26
- ListPlot[{{0,1},{2,1}, {1,3}, {0,1}}, Axes -> False, PlotJoined -> True] Log[z] gives the natural logarithm of z (logarithm to base e). Log[b, z] gives the logarithm to base b. Options[ParametricPlot3D] = {AmbientLight-> GrayLevel[O.], AspectRatio -> Automatic, Axes -> True, AxesEdge ->Automatic, AxesLabel->None, AxesStyle -> Automatic, Background -> Automatic, Boxed-> True, BoxRatios->Automatic, BoxStyle -> Automatic, ColorOutput -> Automatic, Compiled -> True, DefaultColor -> Automatic, Epilog-> {}, FaceGrids-> None, ImageSize -> Automatic, Lighting -> True, LightSources -> { { {1.,0.,1.}, RGBColor[l,O,O]}, { {1.,1.,1.}, RGBColor[O,l,O]}, { {0.,1.,1.}, RGBColor[O,O,l]} }, Plot3Matrix-> Automatic, PlotLabel -> None, PlotPoints->Automatic, PlotRange -> Automatic, PlotRegion -> Automatic, Polygonlntersections -> True, Prolog-> {}, RenderAll -> True, Shading-> True, SphericalRegion -> False, Ticks -> Automatic, ViewCenter -> Automatic, ViewPoint -> {1.3,-2.399999999999999,2.}, ParametricPlot3D[{2t, Sin[3t], Cos[3t]}, {t, 0, 5Pi}, Boxed -> False, Axes -> False]
- Pi ('rr) is the constant pi, with numerical value approximately equal to 3.14159.
- Plot3D[f, {x, xmin, xmax}, {y, ymin, ymax}) generates a three-dimensional plot of f as a function of x and y. Plot 3D [ { f, s}, { x, xmin, xmax}, {y, ymin, ymax}] generates a three-dimensional plot in which the height of the surface is specified by j, and the shading is specified by s. Options[Plot3D] = AmbientLight -> GrayLevel[O], AspectRatio -> Automatic, Axes -> True, AxesEdge -> Automatic, AxesLabel->None, AxesStyle -> Automatic, Background -> Automatic, Boxed -> True, BoxRatios -> {1 ,1,0.4}, BoxStyle -> Automatic, ClipFill-> Automatic, ColorFunction -> Automatic, ColorOutput -> Automatic, Compiled -> True, DefaultColor -> Automatic, Epilog -> {} , FaceGrids -> None, Sign[-1.35];
- References
- Ganzha, V.G. and Vorozhtsov, E.V., Numerical Solutions for Partial Differential Equations: Problem Solving Using Math- ematica, CRC Press, Boca Raton, 1996.
- Parker, L. and Christensen, S.M., MathTensor: a System for Doing Tensor Analysis by Computer, Addison-Wesley, Reading, 1994.
- Kythe, P.K., Puri, P., and Schaferkotter, M.R., Partial Differential Equations and M athematica, CRC Press, Boca Ra- ton, 1996.
- Vvedensky, D., Partial Differential Equations with Mathemat- ica, Addison-Wesley, Reading, 1993.
- Skeel, R.D. and Keiper, J.B., Elementary Numerical Com- puting with Mathematica, McGraw-Hill, Inc., New York, 1993.
- Baumann, G., Mathematica in Theoretical Physics: Selected Examples from Classical Mechanics to Fractals, TELOS/Sprin- ger-Verlag, New York, 1996.
- Martin, E. (Ed.), Mathematica 3.0. Standard Add-on Pack- ages, Wolfram Media, Cambridge University Press, Champaign, IL, 1996.