Academia.eduAcademia.edu

Outline

Foundations of Fluid Mechanics with Applications

2017, Modern Birkhäuser classics

https://doi.org/10.1007/978-3-319-66149-0

Abstract

Library of Congress Cataloging-in-Publication Data Kiselev, S.P. (Sergey Petrovich) Foundations of fluid mechanics with applications : problem solving using Mathematica / Sergey P. Kiselev, Evgenii V. Vorozhtsov, Vasily M. Fomin. p. em. (Modeling and simulation in science, engineering and technology) Includes bibliographical references and index.

References (158)

  1. Sedov, L.I., Continuum Mechanics, Vol. 1 (in Russian), Fifth Edition, Nauka, Moscow, 1994.
  2. Sokolnikov, I., Tensor Analysis (Theory and Applications in Geometry and in Continuum Mechanics (in Russian), Nauka, Moscow, 1971.
  3. McConnell, A.J ., Application of Tensor Analysis, Dover Pub- lications Inc., New York, 1957.
  4. Rashevskii, P.K., The Riemann Geometry and Tensor Analysis (in Russian), Nauka, Moscow, 1967.
  5. Ilyushin, A.A., Continuum Mechanics (in Russian), Moscow State University, Moscow, 1990.
  6. Germain, P., Cours de Mecanique des Milieux Continus. Tome I. Theorie Generate, Masson et cie' Editeurs, Paris, 1973.
  7. Smirnov, V.I., A Course of Higher Mathematics (in Russian), Vol. 3, Pt. 1, Nauka, Moscow, 1967.
  8. Godunov, S.K., Elements of Continuum Mechanics (in Rus- sian), Nauka, Moscow, 1978.
  9. Eringen, A.C., Mechanics of Continua, John Wiley and Sons, Inc., New York, 1967.
  10. Mindlin, R.D., Micro-structure in linear plasticity, Archive of Rational Mechanics and Analysis, 1:51, 1964.
  11. Palmov, V.A., Basic equations of the nonsymmetric elastic- ity, Prikladnaya Matematika i Mekhanika (in Russian), 28(3):401, 1964.
  12. Cosserat, E. and Cosserat, F., Theorie des corps deformables, Hermann, Paris, 1909.
  13. Uhlenbeck, G.E. and Ford, G.W., Lectures in Statistical Me- chanics, American Mathematical Society, Providence, Rhode Is- land, 1963.
  14. Hirshfelder, J.O., Curtiss, C.F., and Bird, R.B., The Molecular Theory of Gases and Liquids, John Wiley and Sons, Inc., New York, 1954.
  15. Sedov, L.I., Continuum Mechanics, Vol. 1 (in Russian), Fifth Edition, Nauka, Moscow, 1994.
  16. Nicolis, G. and Prigogine, I., Exploring Complexity: An In- troduction, W.H. Freeman and Company, New York, 1989.
  17. Nicolis, J .S., Dynamics of Hierarchical Systems. An Evolution- ary Approach, Springer-Verlag, Berlin, 1986.
  18. Ilyushin, A.A., Continuum Mechanics (in Russian), Moscow State University, Moscow, 1990.
  19. Landau, L.D. and Lifschitz, E.M., Statistical Physics, Pt. I (in Russian), Nauka, Moscow, 1976.
  20. Goldstein, H., Classical Mechanics, Addison-Wesley, Cam- bridge, Massachusetts, 1950.
  21. Lanszos, C., The Variational Principles of Mechanics, Univ. Toronto Press, 1949.
  22. Leech, J.W., Classical Mechanics, John Wiley and Sons, Inc., New York, 1958.
  23. Berdichevskii, V.L., Variational Principles of Continuum Me- chanics (in Russian), Nauka, Moscow, 1983.
  24. Landau, L.D. and Lifschitz, E.M., Field Theory (in Russian), Vol. 2, Nauka, Moscow, 1988.
  25. Logunov, A.A., Lectures on the Theories of Relativity and Gravitation (Up-to-Date Analysis of the Problem) (in Russian), Vol. 2, Nauka, Moscow, 1988.
  26. Eshelby, J.D., Continual Theory of Defects, Solid State Phys., Vol. 3, p. 79, 1956.
  27. Warsi, Z.U.A., Fluid Dynamics. Theoretical and Computatio- nal Approaches, CRC Press, Boca Raton, 1993.
  28. Landau, L.D. and Lifschitz, E.M., Elasticity Theory (in Rus- sian), Nauka, Moscow, 1987.
  29. Ovsyannikov, L.V., The Group Analysis of Differential Equa- tions (in Russian), Nauka, Moscow, 1978.
  30. Richtmyer, R.D., Principles of Advanced Mathematical Phys- ics, Vol. 2, Springer-Verlag, New York, 1978. References
  31. Sedov, L.I., Similarity and Dimensional Methods in Mechan- ics (in Russian), Ninth Edition, Nauka, Moscow, 1987 [English translation made by A.G. Volkovets: Sedov, L.I., Similarity and Dimensional Methods in Mechanics, CRC Press, Boca Ra- ton, 1993].
  32. Birkhoff, G., Hydrodynamics. A Study in Logic, Fact and Simil- itude, Princeton University Press, Princeton, 1960.
  33. Ovsyannikov, L.V., Lectures on the Fundamentals of Gas Dy- namics (in Russian), Nauka, Moscow, 1981.
  34. Landau, L.D. and Lifschitz, E.M., Hydrodynamics (in Rus- sian), Nauka, Moscow, 1986.
  35. Smirnov, V.I., A Course of Higher Mathematics, Vol. IV, Birk- hauser Verlag, Basel and Stuttgart, 1961.
  36. Chorin, A.J. and Marsden, J .E., Mathematical Introduction to Fluid Mechanics. Second Edition, Springer-Verlag, New York, 1990.
  37. Godunov, S.K., Equations of the Mathematical Physics (in Russian), Nauka, Moscow, 1979.
  38. Rozdestvenskii, B.L. and Janenko, N.N., Systems of Quasi- linear Equations and Their Applications to Gas Dynamics. Sec- ond Edition (in Russian), Nauka, Moscow, 1978. English transl.: Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translations of Mathematical Monographs, Vol. 55, American Mathematical Society, Providence, Rhode Island, 1983. References
  39. Kochin, N.E., Kibel, I.A., and Rose, N.V., Theoretical Hydromechanics (in Russian), Vol. I, 6th Edition; Vol. II, 4th Edition, Fizmatgiz, Moscow, 1963.
  40. Milne-Thompson, L.M., Theoretical Hydrodynamics, 5th Edi- tion, MacMillan, New York, 1967.
  41. Gromeka, I.S., Some Cases of Incompressible Fluid Flow (in Russian), Kazan, 1881 (Reprinted in: Gromeka, I.S., Collected Works (in Russian), USSR Academy of Sciences, Moscow, 1952, p. 76.
  42. Lamb, H., Hydrodynamics, 6th Edition, Cambridge University Press, London, 1932; Dover Publications, New York, 1945.
  43. Germain, P., Cours de Mecanique des Milieux Continus. Tome I. Theorie Generale, Masson et cie' Editeurs, Paris, 1973.
  44. Sedov, L.I., Continuum Mechanics, Vols. I and II (in Russian), Fifth Edition, Nauka, Moscow, 1994.
  45. Kirchhoff, G.R., Mechanics (in Russian; translated from Ger- man), USSR Academy of Sciences, Moscow, 1962.
  46. Sedov, L.I., Planar Problems of Hydrodynamics and Aerody- namics (in Russian), Second Edition, Nauka, Moscow, 1966.
  47. Vallander, S.V., Lectures in Hydroaeromechanics (in Russian), Leningrad State University, Leningrad, 1978.
  48. Warsi, Z.U.A., Fluid Dynamics. Theoretical and Computatio- nal Approaches, CRC Press, Boca Raton, 1993.
  49. Batchelor, G.K., An Introduction to Fluid Dynamics, Cam- bridge University Press, London, 1967.
  50. Fletcher, C.A.J., Computational Techniques for Fluid Dynam- ics, Vols. I, II, 3rd Edition, Springer-Verlag, Berlin, 1996.
  51. Strampp, W., Ganzha, V., and Vorozhtsov, E., Hohere Mathematik mit Mathematica. Band 3: Differentialgleichungen und Numerik, Verlag Vieweg, Braunschweig/Wiesbaden, 1997. References
  52. Kochin, N.E., Kibel, I.A., and Rose, N.V., Theoretical Hydromechanics (in Russian), Vol. II, 4th Edition, Fizmatgiz, Moscow, 1963.
  53. Birkhoff, G., Hydrodynamics. A Study in Logic, Fact and Simil- itude, Second Edition, Princeton University Press, Princeton, NJ, 1960.
  54. Prandtl, L., The Mechanics of Viscous Fluids. Vol. III, Aero- dynamic Theory, Springer, Berlin, 1935.
  55. Prandtl, L. and Tietjens, O.G., Applied Hydro-and Aerome- chanics (Translated from the German edition, Springer, Berlin, 1931), McGraw-Hill, New York, 1934.
  56. Schlichting, H., Boundary Layer Theory, Seventh Edition, McGraw-Hill, New York, 1979.
  57. Loitsyanskii, L.G., Mechanics of Liquids and Gases, Pergamon Press, Oxford, 1966.
  58. Mises, R., Bemerkungen zur Hydrodynamik, Zeitschrift fiir angewandte Mathematik und Mechanik, 7:425, 1927.
  59. Strampp, W., Ganzha, V., and Vorozhtsov, E., Hohere Mathematik mit Mathematica. Band 3: Differentialgleichungen und Numerik, Verlag Vieweg, Braunschweig/Wiesbaden, 1997.
  60. Lin, C.C., The Theory of Hydrodynamic Stability, University Press, Cambridge, 1955.
  61. Landau, L.D. and Lifschitz, E.M., Hydrodynamics (in Rus- sian), Nauka, Moscow, 1986.
  62. Swinney, H.L. and Gollub, J.P. (Editors), Hydrodynamic In- stabilities and the Transition to Turbulence, Vol. 45, Springer- Verlag, Berlin, 1981.
  63. Ruelle, D. and Takens, F., On the nature of turbulence, Com- munications on Mathematical Physics, 20:167, 1971; 23:343, 1971.
  64. Feigenbaum, M.J., Universality in the behavior of nonlinear systems, Uspekhi Fizicheskikh Nauk (in Russian), 141:343, 1983 [translated from the Los Alamos Science (Summer 1980)], p. 4.
  65. Lorenz, E.N., Deterministic nonperiodic flow, J. Atmos. Sci., 20:130, 1963.
  66. Libby, P.A. and Williams, F. (Editors), Turbulent Reacting Flows, Topics in Applied Physics, vol. 44, Springer-Verlag, Ber- lin, 1980.
  67. Bradshaw, P. (Editor), Turbulence, Second Edition, Topics in Applied Physics, Vol. 12, Springer-Verlag, Berlin, 1978.
  68. Monin, A.S. and Yaglom, A.M., Statistical Fluid Mechanics, Vols. I and II, MIT Press, Cambridge, MA, 1971.
  69. Hinze, J.O., Turbulence, an Introduction to Its Mechanism and Theory, McGraw-Hill, New York, 1959.
  70. Vallander, S.V., Lectures in Hydroaeromechanics (in Russian), Leningrad State University, Leningrad, 1978.
  71. Loitsyanskii, L.G., Mechanics of Liquids and Gases, Pergamon Press, Oxford, 1966.
  72. Laval, P., Time-dependent calculation method for transonic noz- zle flows, Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, September 15-19, 1970, University of California, Berkeley/ Ed. M. Holt. Lecture Notes in Physics, Vol. 8. Springer-Verlag, Berlin, 1971, p. 187.
  73. Ganzha, V.G. and Vorozhtsov, E.V., Numerical Solutions for Partial Differential Equations: Problem Solving Using Math- ematica, CRC Press, Boca Raton, 1996.
  74. Landau, L.D. and Lifschitz, E.M., Hydrodynamics (in Rus- sian), Nauka, Moscow, 1986.
  75. Sedov, L.I., Continuum Mechanics, Vols. I and II (in Russian), Fifth Edition, Nauka, Moscow, 1994.
  76. Kochin, N.E., Kibei, I.A., and Rose, N.V., Theoretical Hydromechanics (in Russian), Vol. II, 4th Edition, Fizmatgiz, Moscow, 1963.
  77. Ovsyannikov, L.V., Lectures on the Fundamentals of Gas Dy- namics (in Russian), Nauka, Moscow, 1981.
  78. Rozdestvenskii, B.L. and Janenko, N.N., Systems of Quasi- linear Equations and Their Applications to Gas Dynamics. Sec- ond Edition (in Russian), Nauka, Moscow, 1978. [English transl.: Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translations of Mathematical Monographs, Vol. 55 (American Mathematical Society, Providence, Rhode Island, 1983)].
  79. Stanyukovich, K.P., Transient Motions of Continuum (in Rus- sian), Nauka, Moscow, 1971.
  80. Chaplygin, S.A., On gas jets, Uchenye Zapiski MGU, otd. jisico-matematicheskih nauk (in Russian), Vol. 24, Moscow, 1904.
  81. Chernyi, G.G., Gas Dynamics (in Russian), Nauka, Moscow, 1988.
  82. Dombrovskii, G.N., Method for the Adiabat Approximation in the Theory of Planar Gas Motions (in Russian), Nauka, Moscow, 1964.
  83. Mises von R., Mathematical Theory of Compressible Fluid Flow, Academic Press, New York, 1958.
  84. Courant, R., and Friedrichs, K.O., Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, 1948.
  85. Ben-Dor, G., Shock Wave Reflection Phenomena, Springer- Verlag, New York, Berlin, 1992.
  86. Ferri, A., Elements of Aerodynamics of Supersonic Flows, Mac- Millan, New York, 1949.
  87. Liepmann, H.W., and Roshko, A., Elements of Gas Dynam- ics, John Wiley and Sons, Inc., New York, 1957.
  88. Fomin, V.M. et al., Experimental investigation of a transition to Mach reflection of stationary shock waves, Doklady Rossiyskoi Akademii Nauk (in Russian), Vol. 357:623, 1997.
  89. Maikapar, G.I., On the wave drag of asymmetric bodies in su- personic flow, Prikladnaya Matematika i Mekhanika (in Russian), Vol. 23:376, 1959.
  90. Shchepanovskii, V.A., Gasdynamic Design (in Russian), Na- uka, Novosibirsk, 1991.
  91. Shchepanovskii, V.A. and Gutov, B.I., Gasdynamic Design of Supersonic Inlets (in Russian), Nauka, Novosibirsk, 1993. References
  92. Rakhmatulin, Kh.A., The fundamentals of gas dynamics of interpenetrating motions of compressible media, Prikladnaya Ma- tematika i Mekhanika (in Russian), 20(2):184, 1956.
  93. Kraiko, A.N., Nigmatulin, R.I., Starkov, V.K., and Ster- nin, L.E., Mechanics of multiphase media, Itogi nauki i tehniki. Ser. Gidromekhanika (in Russian), Vol. 6, Nauka, Moscow, 1972.
  94. Nigmatulin, R.I., The Fundamentals of the Mechanics of Het- erogeneous Media (in Russian), Nauka, Moscow, 1978.
  95. Nigmatulin, R.I., The Dynamics of the Multiphase Media (in Russian), Part 1, Nauka, Moscow, 1987.
  96. Nigmatulin, R.I., The Dynamics of the Multiphase Media (in Russian), Part 2, Nauka, Moscow, 1987.
  97. Nikolaevskii, V.N. et al., The Mechanics of Saturated Porous Media (in Russian), Nedra, Moscow, 1970.
  98. Yanenko, N.N., Soloukhin, R.I., Papyrin, A.N., and Fomin, V.M., Supersonic Two-Phase Flows under the Condi- tions of Velocity Nonequilibr-ium of Particles (in Russian), Nauka, Novosibirsk, 1980.
  99. Kiselev, S.P., Ruev, G.A., Thunev, A.P., Fomin, V.M., and Shavaliev, M.Sh., Shockwave Processes in Two- Component and Two-Phase Media (in Russian), Nauka, Novosi- birsk, 1992.
  100. Panton, P., Flow properties from the continuum viewpoint of a nonequilibrium gas-particle mixture, J. Fluid Mechanics, 31(2):273, 1968.
  101. Henderson, C.B., Drag coefficient of spheres in continuum and rarefied flows, AIAA J., 14(6):707, 1967.
  102. Carlson, D.I. and Hogland, R.F., Particle drag and heat transfer in rocket nozzles, AIAA J., 2(11):1980, 1964.
  103. Boiko, V.M. et al., Shock wave interaction with a cloud of particles, Shock Waves, 7:275, 1997.
  104. Kraiko, A.N. and Sternin, L.E., Theory of flows of a two- velocity continuous medium containing solid or liquid particles, Pr-ikladnaya Matematika i Mekhanika (in Russian), 29(3):418, 1965. (English transl. in: J. Appl. Math. Mechanics (PMM), 29(3):482, 1965).
  105. Klebonov, L.A., Kroshilin, A.E., Nigmatulin, B.I., and Nigmatulin, R.I., On the hyperbolicity, stability and correct- ness of the Cauchy problem for the system of equations of two- velocity motion of two-phase media, Prikladnaya Matematika i Mekhanika (in Russian), 46(1):83, 1982.
  106. Kraiko, A.N ., On the correctness of the Cauchy problem for a two-liquid flow model of a gas-particle mixture, Prikladnaya Matematika i Mekhanika (in Russian), 46(3):420, 1982.
  107. Kliegel, J .R. and Nickerson, G.R., Flow of gas-particle mix- tures in axially symmetric nozzles, in Detonation and Two-Phase Flow. Progress in Astronautics and Rocketry, Vol. 6/Eds. S.S. Penner and F.A. Williams, Academic Press, New York, 1962, p. 173.
  108. Kiselev, S.P. and Fomin, V.M., A continual/discrete model for the gas-particle mixture at a small volume concentration of particles, Zhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki (in Russian), 2:93, 1986.
  109. Lavrentyev, M.M., Romanov, V.G., and Shishatskii, S.P., Ill-Posed Problems of the Mathematical Physics and Anal- ysis (in Russian), Nauka, Moscow, 1980.
  110. Myasnikov, V.P., On the dynamic motion equations of two- component systems, Zhurnal Prikladnoi Mekhaniki i Tehnich- eskoi Fiziki (in Russian), 2, 58, 1967.
  111. Goldshtik, M.A. and Kozlov, B.M., The elementary theory of the condensed disperse systems, Zhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki (in Russian), 4:89, 1973.
  112. Bird, G.A., Molecular Gas Dynamics, Clarendon Press, Oxford, 1976.
  113. Volkov, A. and Tsirkunov, Yu., Direct simulation Monte- Carlo modelling of two-phase gas-solid particle flows with inelas- tic particle-particle collisions, in Proc. 3rd ECCOMAS Com- putational Fluid Dynamics Conf., 9-13 September 1996, Paris, France, John Wiley and Sons, Inc., New York, 1996, p. 662.
  114. Kiselev, S.P. and Fomin, V.M., The relations at a com- bined discontinuity in gas with solid particles, Zhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki (in Russian), 2:112, 1984.
  115. Sternin, L.E., The Fundamentals of the Gas Dynamics of Two-Phase Nozzle Flows (in Russian), Mashinostroenie, Moscow, 1974.
  116. Kliegel, J .R., Gas particle nozzle flows, Ninth Symposium (In- ternational) on Combustion, Academic Press, New York, 1963, p. 811.
  117. Kogan, M.N., Rarefied Gas Dynamics (in Russian), Nauka, Moscow, 1967.
  118. Zeldovich, Ya.B. and Myshkis, A.D., The Elements of the Mathematical Physics (in Russian), Nauka, Moscow, 1973.
  119. Zeldovich, Ya.B., Selected Works. Particles, Kernels, the Uni- verse (in Russian), Nauka, Moscow, 1985.
  120. Arnold, V.I., Catastrophe Theory (in Russian), Nauka, Moscow, 1990.
  121. Kiselev, S.P. and Kiselev, V.P., On the interaction of a shock wave with a cloud of particles with perturbed boundaries, Zhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki (in Russian), 37(4):36, 1996.
  122. Kuhl, A.L., Reichenbach, H., and Ferguson, R.E., Shock interaction with a dense-gas wall layer. In: Shock Waves Proc., Vol. 1 /Ed. K. Takayama, Sendai, Japan, 1991.
  123. Boiko, V.M., The Investigation of the Dynamics of Acceler- ation, Breakdown, and Ignition of Particles Behind the Shock Waves by the Methods of Laser Visualization, a summary of The- sis (in Russian), Novosibirsk, 1984.
  124. Kiselev, S.P. and Kiselev, V.P., On the ignition of coal dust particles in shock waves, Prikladnaya M ekhanika i Tehnicheskaya Fizika (in Russian), 36(3):31, 1995.
  125. Kiselev, S.P. and Kiselev, V.P., On some peculiarities of gas flow arising as a result ofthe shock wave interaction with a cloud of particles, Prikladnaya Mekhanika i Tehnicheskaya Fizika (in Russian), 36(2), 8, 1995.
  126. Fomin, V.M. et al., On some peculiarities of gas flow arising at the shock wave interaction with a cloud of particles, Doklady Rossiiskoi Akademii Nauk (in Russian), 340(2):8, 1995.
  127. Landau, L.D. and Lifschitz, E.M., Hydrodynamics (in Rus- sian), Nauka, Moscow, 1986.
  128. Landau, L.D. and Lifschitz, E.M., Statistical Physics (in Russian), Part 1, Nauka, Moscow, 1976.
  129. Larson, R.G. and Hirasaki, G.J., Analysis of the physical mechanisms in surfactant flooding, Soc. Petroleum Eng. J., 18(1):42, 1978.
  130. Larson, R.G., Davis, H.T., and Scriven, L.E., Displace- ment of residual nonwetting fluid from porous media, Chem. Eng. Sci., 18:75, 1980.
  131. Davis, S.A. and Jones, S.C., Displacement mechanism of mi- cellar solution, J. Petroleum Technol., 20:1415, 1968.
  132. Chernyi, I.A., Soil Hydrogasdynamics (in Russian), Gostopte- hizdat, Moscow, 1963.
  133. Barenblatt, G.I., Entov, V.M., and Ryzhik, V.M., The Motion of Liquids and Gases in Natural Seams (in Russian), Ne- dra, Moscow, 1984.
  134. Kiselev, S.P., Continuum Mechanics (in Russian), Novosibirsk State Technical University, Novosibirsk, 1997.
  135. Nakoryakov, V.E., Sobolev, V.V., and Schreiber, I.R., Long wavelength disturbances in a gas-liquid mixture, Izvestiya AN SSSR, Mekhanika Zhidkosti i Gaza (in Russian), 5:71, 1972.
  136. Wijngaarden, L. van, One-dimensional flow of liquids contain- ing small gas bubbles, Annu. Rev. Fluid Mechanics, Vol. 4:369, 1972.
  137. Kutateladze, S.S. and Nakoryakov, V.E., Heat and Mass Transfer and the Waves in Gas-Liquid Systems (in Russian), Nauka, Novosibirsk, 1984.
  138. Karpman, V.I., Nonlinear Waves in Disperse Media (in Rus- sian), Nauka, Moscow, 1973.
  139. Zakharov, V.E. et al., The Theory of Solitons (in Russian), Nauka, Moscow, 1980.
  140. Zabusky, N.J., and Kruskal, M.D., Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15:240, 1965.
  141. Sagdeev, R.Z., On nonlinear motions of rarefied plasma in the magnetic field, in Physics of Plasma and the Problem of Con- trolled Thermonuclear Reactions (in Russian), Vol. 4, USSR Aca- demy of Sciences, Novosibirsk, 1958, p. 384.
  142. Nigmatulin, R.I., Ivandaev, A. I., Nigmatulin, B. I., and Milashenko, V.I., Nonstationary wave processes in the gas/vapor/liquid mixtures, in Nonlinear Wave Processes in Two- Phase Media (in Russian), Institute of Thermophysics of the USSR Academy of Sciences, Novosibirsk, 1977, p. 80.
  143. Berezin, Y.A., Modeling of Nonlinear Wave Processes (in Rus- sian), Nauka, Novosibirsk, 1982.
  144. Richtmyer, R.D. and Morton, K.W., Difference Methods for Initial-Value Problems, Second Edition, Interscience Publishers, New York, 1967.
  145. ListPlot[{yl, y2, ... }] plotsalistofvalues. Thexcoordinates for each point are taken to be 1, 2, ....
  146. ListPlot[{{x1, y1}, {x2, y2}, ... }] plots a list of values with specified x and y coordinates. Options[ListPlot] = {AspectRatio-> GoldenRatio(-l), Axes-> Automatic, AxesLabel->None, AxesOrigin -> Automatic, AxesStyle -> Automatic, Background -> Automatic, ColorOutput -> Automatic, DefaultColor-> Automatic, Epilog-> {}, Frame -> False, FrameLabel -> None, FrameStyle->Automatic, FrameTicks->Automatic, GridLines -> None, ImageSize -> Automatic, PlotJoined -> False, PlotLabel -> None, PlotRange -> Automatic, PlotRegion -> Automatic, PlotStyle->Automatic, Prolog-> {}, RotateLabel -> True, Ticks -> Automatic, DefaultFont: >$DefaultFont, Display Function: >$Display Function, Format Type: >$FormatType, TextStyle: >$TextStyle} [see also Fig. A.5 (b)].
  147. Example 26
  148. ListPlot[{{0,1},{2,1}, {1,3}, {0,1}}, Axes -> False, PlotJoined -> True] Log[z] gives the natural logarithm of z (logarithm to base e). Log[b, z] gives the logarithm to base b. Options[ParametricPlot3D] = {AmbientLight-> GrayLevel[O.], AspectRatio -> Automatic, Axes -> True, AxesEdge ->Automatic, AxesLabel->None, AxesStyle -> Automatic, Background -> Automatic, Boxed-> True, BoxRatios->Automatic, BoxStyle -> Automatic, ColorOutput -> Automatic, Compiled -> True, DefaultColor -> Automatic, Epilog-> {}, FaceGrids-> None, ImageSize -> Automatic, Lighting -> True, LightSources -> { { {1.,0.,1.}, RGBColor[l,O,O]}, { {1.,1.,1.}, RGBColor[O,l,O]}, { {0.,1.,1.}, RGBColor[O,O,l]} }, Plot3Matrix-> Automatic, PlotLabel -> None, PlotPoints->Automatic, PlotRange -> Automatic, PlotRegion -> Automatic, Polygonlntersections -> True, Prolog-> {}, RenderAll -> True, Shading-> True, SphericalRegion -> False, Ticks -> Automatic, ViewCenter -> Automatic, ViewPoint -> {1.3,-2.399999999999999,2.}, ParametricPlot3D[{2t, Sin[3t], Cos[3t]}, {t, 0, 5Pi}, Boxed -> False, Axes -> False]
  149. Pi ('rr) is the constant pi, with numerical value approximately equal to 3.14159.
  150. Plot3D[f, {x, xmin, xmax}, {y, ymin, ymax}) generates a three-dimensional plot of f as a function of x and y. Plot 3D [ { f, s}, { x, xmin, xmax}, {y, ymin, ymax}] generates a three-dimensional plot in which the height of the surface is specified by j, and the shading is specified by s. Options[Plot3D] = AmbientLight -> GrayLevel[O], AspectRatio -> Automatic, Axes -> True, AxesEdge -> Automatic, AxesLabel->None, AxesStyle -> Automatic, Background -> Automatic, Boxed -> True, BoxRatios -> {1 ,1,0.4}, BoxStyle -> Automatic, ClipFill-> Automatic, ColorFunction -> Automatic, ColorOutput -> Automatic, Compiled -> True, DefaultColor -> Automatic, Epilog -> {} , FaceGrids -> None, Sign[-1.35];
  151. References
  152. Ganzha, V.G. and Vorozhtsov, E.V., Numerical Solutions for Partial Differential Equations: Problem Solving Using Math- ematica, CRC Press, Boca Raton, 1996.
  153. Parker, L. and Christensen, S.M., MathTensor: a System for Doing Tensor Analysis by Computer, Addison-Wesley, Reading, 1994.
  154. Kythe, P.K., Puri, P., and Schaferkotter, M.R., Partial Differential Equations and M athematica, CRC Press, Boca Ra- ton, 1996.
  155. Vvedensky, D., Partial Differential Equations with Mathemat- ica, Addison-Wesley, Reading, 1993.
  156. Skeel, R.D. and Keiper, J.B., Elementary Numerical Com- puting with Mathematica, McGraw-Hill, Inc., New York, 1993.
  157. Baumann, G., Mathematica in Theoretical Physics: Selected Examples from Classical Mechanics to Fractals, TELOS/Sprin- ger-Verlag, New York, 1996.
  158. Martin, E. (Ed.), Mathematica 3.0. Standard Add-on Pack- ages, Wolfram Media, Cambridge University Press, Champaign, IL, 1996.