Academia.eduAcademia.edu

Outline

Predicting process performance: A white-box approach

2017

Abstract

Predictive business process monitoring methods exploit historical process execution logs to provide predictions about running instances of a process. These predictions enable process workers and managers to preempt performance issues or compliance violations. A number of approaches have been proposed to predict quantitative process performance indicators for running instances of a process, including remaining cycle time, cost, or probability of deadline violation. However, these approaches adopt a black-box approach, insofar as they predict a single scalar value without decomposing this prediction into more elementary components. In this paper, we propose a white-box approach to predict performance indicators of running process instances. The key idea is to first predict the performance indicator at the level of activities, and then to aggregate these predictions at the level of a process instance by means of flow analysis techniques. The paper develops this idea in the context of predicting the remaining cycle time of ongoing process instances. The proposed approach has been evaluated on real-life event logs and compared against several baselines.

References (51)

  1. Maggi Fabrizio Maria, Di Francescomarino Chiara, Dumas Mar- lon, Ghidini Chiara. Predictive monitoring of business processes. In: CAiSE:457-472. Springer; 2014.
  2. Leontjeva Anna, Conforti Raffaele, Di Francescomarino Chiara, Dumas Marlon, Maggi Fabrizio Maria. Complex Symbolic Sequence Encodings for Predictive Monitoring of Business Processes. In: BPM:297-313; 2015.
  3. Spoel Sjoerd, Keulen Maurice, Amrit Chintan. Process prediction in noisy data sets: a case study in a Dutch hospital. In: International Symposium on Data-Driven Process Discovery and Analysis:60- 83. Springer; 2012.
  4. Evermann Joerg, Rehse Jana-Rebecca, Fettke Peter. A Deep Learn- ing Approach for Predicting Process Behaviour at Runtime. In: Busi- ness Process Management Workshops -BPM 2016 International Workshops, Rio de Janeiro, Brazil, September 19, 2016, Revised Papers:327-338; 2016.
  5. Aalst Wil M. P., Schonenberg M. H., Song Minseok. Time prediction based on process mining. Information systems. 2011;36(2):450-475.
  6. Rogge-Solti Andreas, Weske Mathias. Prediction of remaining ser- vice execution time using stochastic Petri nets with arbitrary firing delays. In: ICSOC:389-403. Springer; 2013.
  7. Rogge-Solti Andreas, Weske Mathias. Prediction of business pro- cess durations using non-Markovian stochastic Petri nets. Informa- tion Systems. 2015;54:1-14.
  8. Dumas Marlon, La Rosa Marcello, Mendling Jan, Reijers Hajo A.. Fundamentals of Business Process Management, Second Edition. . Springer; 2018.
  9. Verenich Ilya, Nguyen Hoang, La Rosa Marcello, Dumas Marlon. White-box prediction of process performance indicators via flow analysis. In: Proceedings of the 2017 International Conference on Software and System Process, Paris, France, ICSSP 2017, July 5-7, 2017:85-94; 2017.
  10. Márquez-Chamorro A. E., Resinas M., Ruiz-Corts A.. Predictive monitoring of business processes: a survey. IEEE Transactions on Services Computing. 2017;PP(99):1-1.
  11. Pika Anastasiia, Aalst Wil M P, Fidge Colin J, Hofstede Arthur H. M., Wynn Moe T. Predicting deadline transgressions using event logs. In: BPM:211-216. Springer; 2012.
  12. Conforti Raffaele, Leoni Massimiliano, La Rosa Marcello, Aalst Wil M. P., Hofstede Arthur H. M.. A recommendation system for pre- dicting risks across multiple business process instances. Decision Support Systems. 2015;69:1-19.
  13. Metzger Andreas, Franklin Rod, Engel Yagil. Predictive mon- itoring of heterogeneous service-oriented business networks: The transport and logistics case. In: 2012 Annual SRII Global Conference:313-322. IEEE; 2012.
  14. Dongen Boudewijn F, Crooy Ronald A, Aalst Wil M P. Cycle time prediction: when will this case finally be finished?. In: CoopIS:319- 336. Springer; 2008.
  15. Polato Mirko, Sperduti Alessandro, Burattin Andrea, Leoni Massi- miliano. Data-aware remaining time prediction of business process instances. In: 2014 International Joint Conference on Neural Net- works, IJCNN 2014:816-823; 2014.
  16. Leoni Massimiliano, Aalst Wil M. P., Dees Marcus. A general pro- cess mining framework for correlating, predicting and cluster- ing dynamic behavior based on event logs. Information Systems. 2016;56:235-257.
  17. Senderovich Arik, Weidlich Matthias, Gal Avigdor, Mandelbaum Avishai. Queue mining for delay prediction in multi-class service processes. Information systems. 2015;53:278-295.
  18. Senderovich Arik, Di Francescomarino Chiara, Ghidini Chiara, Jorbina Kerwin, Maggi Fabrizio Maria. Intra and Inter-case Fea- tures in Predictive Process Monitoring: A Tale of Two Dimensions. In: Lecture Notes in Computer Science, vol. 10445: :306-323. Springer; 2017.
  19. Kikas Riivo, Dumas Marlon, Pfahl Dietmar. Using dynamic and con- textual features to predict issue lifetime in GitHub projects. In: Pro- ceedings of the 13th International Conference on Mining Software Repositories, MSR:291-302; 2016.
  20. Rees-Jones Mitch, Martin Matthew, Menzies Tim. Better Predic- tors for Issue Lifetime. CoRR. 2017;abs/1702.07735.
  21. Lakshmanan Geetika T, Shamsi Davood, Doganata Yurdaer N, Unuvar Merve, Khalaf Rania. A Markov prediction model for data- driven semi-structured business processes. Knowledge and Informa- tion Systems. 2015;42(1):97-126.
  22. Breuker Dominic, Matzner Martin, Delfmann Patrick, Becker Jörg. Comprehensible predictive models for business processes. MIS Quarterly. 2016;40(4):1009-1034.
  23. Tax Niek, Verenich Ilya, La Rosa Marcello, Dumas Marlon. Pre- dictive Business Process Monitoring with LSTM Neural Networks. In: Advanced Information Systems Engineering -29th Interna- tional Conference, CAiSE 2017, Essen, Germany, June 12-16, 2017, Proceedings:477-492; 2017.
  24. Tan P.N., Steinbach M., Karpatne A., Kumar V.. Introduction to Data Mining. What's New in Computer Science Series. Pearson Educa- tion; 2013.
  25. Polyvyanyy Artem, Smirnov Sergey, Weske Mathias. The Tricon- nected Abstraction of Process Models. In: Lecture Notes in Com- puter Science, vol. 5701: :229-244. Springer; 2009.
  26. Armas-Cervantes Abel, Baldan Paolo, Dumas Marlon, García- Bañuelos Luciano. Diagnosing behavioral differences between business process models: An approach based on event structures. Information systems. 2016;56:304-325.
  27. Aalst Wil M. P.. Process Discovery: Capturing the Invisible. IEEE Comp. Int. Mag.. 2010;5(1):28-41.
  28. Augusto Adriano, Conforti Raffaele, Dumas Marlon, et al. Auto- mated Discovery of Process Models from Event Logs: Review and Benchmark. CoRR. 2017;abs/1705.02288.
  29. Yang Yong, Dumas Marlon, García-Bañuelos Luciano, Polyvyanyy Artem, Zhang Liang. Generalized aggregate Quality of Service com- putation for composite services. Journal of Systems and Software. 2012;85(8):1818-1830.
  30. Teinemaa Irene, Dumas Marlon, Maggi Fabrizio Maria, Di Francescomarino Chiara. Predictive Business Process Monitor- ing with Structured and Unstructured Data. In: Business Process Management -14th International Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-22, 2016:401-417; 2016.
  31. Mitchell Tom M.. Machine learning. McGraw-Hill; 1997.
  32. Fayyad Usama M., Piatetsky-Shapiro Gregory, Smyth Padhraic, Uthurusamy Ramasamy, eds. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press; 1996.
  33. Chen Tianqi, Guestrin Carlos. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Fran- cisco, CA, USA, August 13-17, 2016:785-794; 2016.
  34. Fowler B., Rajendiran M., Schroeder T., Bergh N., Flower A., Kang H.. Predicting patient revisits at the University of Virginia Health System Emergency Department. In: 2017 Systems and Information Engineering Design Symposium (SIEDS):253-258; 2017.
  35. Möller A, Ruhlmann-Kleider V, Leloup C, et al. Photometric classifi- cation of type Ia supernovae in the SuperNova Legacy Survey with supervised learning. Journal of Cosmology and Astroparticle Physics. 2016;2016(12):008.
  36. Torlay L., Perrone-Bertolotti Marcela, Thomas E., Baciu Monica. Machine learning-XGBoost analysis of language networks to clas- sify patients with epilepsy. Brain Informatics. 2017;4(3):159-169.
  37. Olson Randal S., La Cava William, Mustahsan Zairah, Varik Akshay, Moore Jason H.. Data-driven Advice for Applying Machine Learn- ing to Bioinformatics Problems. CoRR. 2017;abs/1708.05070.
  38. Hastie Trevor, Tibshirani Robert, Friedman Jerome H.. The elements of statistical learning: data mining, inference, and prediction, 2nd Edi- tion. . Springer; 2009.
  39. Urraca-Valle Ruben, Antoñanzas Javier, Antoñanzas-Torres Fer- nando, Pisón Francisco Javier. Estimation of Daily Global Hor- izontal Irradiation Using Extreme Gradient Boosting Machines. In: International Joint Conference SOCO'16-CISIS'16-ICEUTE'16 - San Sebastián, Spain, October 19th-21st, 2016, Proceedings:105- 113; 2016.
  40. Bergstra James, Bengio Yoshua. Random Search for Hyper- Parameter Optimization. Journal of Machine Learning Research. 2012;13:281-305.
  41. Augusto Adriano, Conforti Raffaele, Dumas Marlon, La Rosa Mar- cello, Bruno Giorgio. Automated Discovery of Structured Process Models: Discover Structured vs. Discover and Structure. In: Con- ceptual Modeling -35th International Conference, ER 2016:313- 329; 2016.
  42. Andrews Robert, Suriadi Suriadi, Wynn Moe, et al. Comparing static and dynamic aspects of patient flows via process model visualisa- tions. Preprint available at https://eprints.qut.edu.au/102848/. 2016;.
  43. Raudys Sarunas, Jain Anil K.. Small Sample Size Effects in Statisti- cal Pattern Recognition: Recommendations for Practitioners. IEEE Trans. Pattern Anal. Mach. Intell.. 1991;13(3):252-264.
  44. Teinemaa Irene, Dumas Marlon, La Rosa Marcello, Maggi Fab- rizio Maria. Outcome-Oriented Predictive Process Monitoring: Review and Benchmark. CoRR. 2017;abs/1707.06766.
  45. Ranzato Marc'Aurelio, Huang Fu Jie, Boureau Y-Lan, LeCun Yann. Unsupervised Learning of Invariant Feature Hierarchies with Appli- cations to Object Recognition. In: 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 18-23 June 2007, Minneapolis, Minnesota, USA; 2007.
  46. Hyndman Rob J, Koehler Anne B. Another look at measures of fore- cast accuracy. International Journal of Forecasting. 2006;22(4):679- 688.
  47. Pedregosa F., Varoquaux G., Gramfort A., et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825-2830.
  48. Fukunaga Keinosuke, Hayes Raymond R.. Effects of Sample Size in Classifier Design. IEEE Trans. Pattern Anal. Mach. Intell.. 1989;11(8):873-885.
  49. Tabachnick Barbara G. Using multivariate statistics: Sas Workbook. Addison-Wesley; 1996.
  50. Kull Meelis, Flach Peter A.. Reliability Maps: A Tool to Enhance Probability Estimates and Improve Classification Accuracy. In: Machine Learning and Knowledge Discovery in Databases -Euro- pean Conference, ECML PKDD 2014:18-33; 2014.
  51. How to cite this article: I. Verenich, H. Nguyen, M. Dumas, M. La Rosa, and A. ter Hofstede (2017), Predicting Process Performance: A White- Box Approach, Journal of Software: Evolution and Process, 2017;00:1-6.