Academia.eduAcademia.edu

Outline

Machine Learning for Predictive Business Process Monitoring

Abstract

Due to big data and digitalization, the amount of data in general and of information about processes and their environments in particular is growing continuously. It opens new opportunities to foster and improve predictive business process monitoring. Using the right techniques, organizations could make proper use of this available amount of data. Machine Learning techniques enable a program to exploit the potential of data in order to use it for various purposes. The idea of using past experiences and historical information for predictions can be applied to the field of business processes. The goal is to predict the process outcome at an earlier stage, during process execution, in order to influence the further proceeding. In this thesis we analyse and verify whether machine learning algorithms are suitable in the context of business process monitoring and controlling. We propose the Predictive Business Process Monitoring Framework for predicting the process outcome during process execution. Apart from predicting how the process will end up, the framework takes into account whether the prediction generates benefits from an economic point of view. It therefore serves as a decision support. The framework has been implemented and validated on a process log of a paper review process.

References (50)

  1. Data Center, 2010. Synthetic event logs -review example large.xes.gz. doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
  2. van der Aalst, W.M.P., 2013. Business Process Management: A Comprehensive Survey. ISRN Software Engineering, 2013, pp.1-37.
  3. van der Aalst, W.M.P., Pesic, M. & Song, M., 2010. Beyond Process Mining: From the Past to Present and Future. Advanced Information Systems Engineering, 6051, pp.38-52.
  4. van der Aalst, W.M.P., Schonenberg, M.H. & Song, M., 2011. Time prediction based on process mining. Information Systems, 36(2), pp.450-475.
  5. Batista, G.E.A.P.A. & Monard, M.C., 2003. An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5-6), pp.519-533.
  6. Boser, B.E., Guyon, I.M. & Vapnik, V.N., 1992. A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory. NY, USA: ACM, New York, pp. 144-152.
  7. Breiman, L., 1999. Random Forests. Machine Learning, 45(1), pp.5-32.
  8. Breiman, L., 1996. Bagging Predictors. Machine Learning, 24(2), pp.123-140.
  9. Caruana, R. & Niculescu-Mizil, A., 2006. An Empirical Comparison of Supervised Learning Algorithms Using Different Performance Metrics. In: Proceedings of the 23rd international conference on Machine learning (ICML '06). NY, USA: ACM, New York, pp. 161-168.
  10. Castellanos, M., Salazar, N., Casati, F., Dayal, U. & Shan, M.C., 2006. Predictive business operations management. International Journal of Computational Science and Engineering, 2(5/6), p.292.
  11. Conforti, R., de Leoni, M., La Rosa, M. & van der Aalst, W.M.P., 2013. Supporting Risk- Informed Decisions during Business Process Execution. In: Advanced Information Systems Engineering, LNCS. pp. 116-132.
  12. Conforti, R., La Rosa, M., Fortino, G., Ter Hofstede, A.H.M., Recker, J. & Adams, M., 2013. Real-time risk monitoring in business processes: A sensor-based approach. Journal of Systems and Software, 86(11), pp.2939-2965.
  13. Domingos, P., 2012. A few useful things to know about machine learning. Communications of the ACM, 55(10), p.78.
  14. Dumas, M., La Rosa, M., Mendling, J. & Reijers, H.A., 2013. Fundamentals of Business Process Management, Berlin, Heidelberg: Springer Berlin Heidelberg.
  15. Folino, F., Guarascio, M. & Pontieri, L., 2012. Discovering context-aware models for predicting business process performances. In: R. Meersman, H. Panetto, T. Dillon, S. Rinderle-Ma, P. Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, & I. F. Cruz, eds. On the Move to Meaningful Internet Systems: OTM 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 287-304.
  16. Di Francescomarino, C., Dumas, M., Maggi, F.M. & Teinemaa, I., 2015. Clustering-Based Predictive Process Monitoring. ArXiv e-prints.
  17. Freund, Y. & Schapire, R.R.E., 1996. Experiments with a New Boosting Algorithm. International Conference on Machine Learning, pp.148-156.
  18. Friedman, M., 1970. The Methodology of Positive Economics [1953]. Essays in Positive Economics, II(1953), pp.3-43.
  19. Jalonen, H. & Lönnqvist, A., 2009. Predictive business -fresh initiative or old wine in a new bottle. Management Decision, 47(10), pp.1595-1609.
  20. Kang, B., Cho, N.W. & Kang, S.H., 2009. Real-time risk measurement for business activity monitoring (BAM). International Journal of Innovative Computing, Information and Control, 5(11), pp.3647-3657.
  21. Kang, B., Kim, D. & Kang, S.H., 2012. Real-time business process monitoring method for prediction of abnormal termination using KNNI-based LOF prediction. Expert Systems with Applications, 39(5), pp.6061-6068.
  22. King, R.D., Feng, C. & Sutherland, A., 1995. StatLog: Comparison of Classification Algorithms on large real-world Problems. Applied Artificial Intelligence, 9(3), pp.289- 333.
  23. Kotsiantis, S.B., 2007. Supervised machine learning: A review of classification techniques. Informatica, 31, pp.249-268.
  24. Lakshmanan, G.T., Mukhi, N.K., Khalaf, R., Martens, A. & Rozsnyai, S., 2012. Assessing the health of case-oriented semi-structured business processes. Proceedings -2012 IEEE 9th International Conference on Services Computing, SCC 2012, pp.499-506.
  25. Leyer, M., Heckl, D. & Moormann, J., 2015. Process Performance Measurement. In: J. vom Brocke & M. Rosemann, eds. Handbook on Business Process Management 2. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 227-241.
  26. Maggi, F.M., Di Francescomarino, C., Dumas, M. & Ghidini, C., 2014. Predictive Monitoring of Business Processes. In: M. Jarke, J. Mylopoulos, C. Quix, C. Rolland, Y. Manolopoulos, H. Mouratidis, & J. Horkoff, eds. Advanced Information Systems Engineering (CAiSE 2014), LNCS. Cham: Springer International Publishing, pp. 457- 472.
  27. Manderscheid, J., Reißner, D. & Röglinger, M., 2015. Inspection coming due! How to determine the service interval of your processes! In: R. H. Motahari-Nezhad, J. Recker, & M. Weidlich, eds. Business Process Management, LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 19-34.
  28. Metzger, A., Leitner, P., Ivanovic, D., Schmieders, E., Franklin, R., Carro, M., Dustdar, S. & Pohl, K., 2015. Comparing and combining predictive business process monitoring techniques. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(2), pp.276-290.
  29. Mitchell, T.M., 1997. Machine Learning 1st ed., NY, USA: McGraw-Hill, Inc., New York.
  30. de Morais, R.M., Kazan, S., de Padua, S.I.D. & Costa, A.L., 2014. An analysis of BPM lifecycles: from a literature review to a framework proposal. Business Process Management Journal, 20(3), pp.412-432.
  31. Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M. & Suriadi, S., 2014. Mining Business Process Deviance: A Quest for Accuracy. In: R. Meersman, H. Panetto, T. Dillon, M. Missikoff, L. Liu, O. Pastor, A. Cuzzocrea, & T. Sellis, eds. OTM 2014, LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 436-445.
  32. Opitz, D. & Maclin, R., 1999. Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research, 11, pp.169-198.
  33. Pika, A., Van Der Aalst, W.M.P., Fidge, C.J., Ter Hofstede, A.H.M. & Wynn, M.T., 2013. Predicting deadline transgressions using event logs. In: Lecture Notes in Business Information Processing. pp. 211-216.
  34. Pravilovic, S., Appice, A. & Malerba, D., 2014. Process Mining to Forecast the Future of Running Cases. In: A. Appice, M. Ceci, C. Loglisci, G. Manco, E. Masciari, & W. Z. Ras, eds. New Frontiers in Mining Complex Patterns, LNCS. Cham: Springer International Publishing, pp. 67-81.
  35. Raschka, S., 2015. Python Machine Learning. Birmingham: Packt Publishing.
  36. Recker, J. & Mendling, J., 2015. The State of the Art of Business Process Management Research as Published in the BPM Conference. Business & Information Systems Engineering, 58(1), pp.1-18.
  37. Reijers, H.A. & Mansar, S.L., 2005. Best practices in business process redesign: an overview and qualitative evaluation of sucessful redesign heuristics. Omega, 33, pp.283-306.
  38. Rogge-Solti, A. & Weske, M., 2013. Prediction of Remaining Service Execution Time Using Stochastic Petri Nets with Arbitrary Firing Delays. In: S. Basu, C. Pautasso, L. Zhang, & X. Fu, eds. Service-Oriented Computing, LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 389-403.
  39. Rosenblatt, F., 1962. Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Washington: Spartan Books.
  40. Suriadi, S., Ouyang, C., Van Der Aalst, W.M.P. & Ter Hofstede, A.H.M., 2013. Root cause analysis with enriched process logs. In: Lecture Notes in Business Information Processing. pp. 174-186.
  41. Witten, I.H., Frank, E. & Hall, M. a., 2011. Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, CA, USA: Morgan Kaufmann Publishers Inc., San Francisco.
  42. Xue, H., Yang, Q. & Chen, S., 2009. SVM: Support Vector Machines. In: X. Wu & V. Kumar, eds. The Top Ten Algorithms in Data Mining. Minnesota, USA: Chapman & Hall/CRC, pp.31-60.
  43. Zellner, G., 2011. A structured evaluation of business process improvement approaches. Business Process Management Journal, 17(2), pp.203-237.
  44. #
  45. #OPTIMIZATION saved_loops_mat=matrix(rep(0,101*101),nrow=101,ncol=101) error1_mat=matrix(nrow=101,ncol=101) error2_mat=matrix(nrow=101,ncol=101) pred_percent <-as.data.frame(nnpred)
  46. #Subsequent part of the code iterates over all threshold combinations in [0,1]x[0,1] with step-size 0.01 and calculates the number of #type-1 errors, type-2 errors and avoided loops.
  47. # The value 2 encodes the case that no action is undertaken (neither early rejection nor acceptance) pred_percent$tresh <-2 pred_percent$tresh[(pred_percent[,1] >= threshold_accept)&(pred_percent[,2] < threshold_reject)] <-0 pred_percent$tresh[(pred_percent[,2] >= threshold_reject)&(pred_percent[,1] < threshold_accept)] <-1 #For those instances, where both thresholds are exceeded, the prediction with the higher class probability is taken. pred_percent$tresh[(pred_percent[,1] >= threshold_accept)&(pred_percent[,2] >= threshold_reject)] <- round(pred_percent[(pred_percent[,1] >= threshold_accept)&(pred_percent[,2] >= threshold_reject),2]) pred_percent[,1]<-NULL [,8:57] loops[][is.na(loops[
  48. #Compare human decision and prediction compare=as.data.frame(cbind(test$reject,pred_percent)) compare=as.data.frame(cbind(compare,as.numeric(rownames(compare)))) colnames(compare) <-c("human", "pred","id") #merge tables compare=merge(x = compare, y = num_loops,by.x="id",by.y="V1", all.x = TRUE) colnames(compare) <-c("id","human", "pred","num_loops")
  49. #Subset Tables: correct_action -Err1 -Err2 #If compare$pred==2, this encodes that the prediction certainty was not above any of both thresholds, thus no action has been undertaken in these cases. wrong_action=subset(compare, (compare$human!=compare$pred)&(compare$pred!=2)) err_1=subset(wrong_action, wrong_action$human==0) err_2=subset(wrong_action, wrong_action$human==1)
  50. #If compare$pred==2, this encodes that no action has been undertaken and thus no cost was saved. num_loops_avoided=subset(compare, compare$pred!=2)$num_loops-num_loops_before_pred #can not become negative if data preparation was done correctly. sum_loops_avoided=sum(num_loops_avoided) num_err_1=dim(err_1)[1]#Number of type-1-errors num_err_2=dim(err_2)[1]#Number of type-2-errors #X-Axis: Threshold_accept, Y-Axis: Theshold_reject saved_loops_mat[threshold_accept*100+1,threshold_reject*100+1]=sum_loops_avoided error1_mat[threshold_accept*100+1,threshold_reject*100+1]=num_err_1 error2_mat[threshold_accept*100+1,threshold_reject*100+1]=num_err_2