Abstract
In recent years, there has been a growing desire to monitor and control harmful substances arising from industrial processes that impact upon our health and quality of life. This has led to a large market demand for gas sensors, which are commonly based on sensors that rely upon a chemical reaction with the target analyte. In contrast, thermal conductivity detectors are physical sensors that detect gases through a change in their thermal conductivity. Thermal conductivity gas sensors offer several advantages over their chemical (reactive) counterparts that include higher reproducibility, better stability, lower cost, lower power consumption, simpler construction, faster response time, longer lifetime, wide dynamic range, and smaller footprint. It is for these reasons, despite a poor selectivity, that they are gaining renewed interest after recent developments in MEMS-based silicon sensors allowing CMOS integration and smart application within the emerging Internet of Things (IoT). This timely review focuses on the state-of-the-art in thermal conductivity sensors; it contains a general introduction, theory of operation, interface electronics, use in commercial applications, and recent research developments. In addition, both steady-state and transient methods of operation are discussed with their relative advantages and disadvantages presented. Finally, some of recent innovations in thermal conductivity gas sensors are explored.
References (130)
- Gas Sensor Market Size & Share Report, 2022-2030. Available online: https://www.grandviewresearch.com/industry-analysis/ gas-sensors-market (accessed on 21 October 2022).
- MEMS Sensor Market Size, Share|Vendors Analysis & Forecast. 2026. Available online: https://www.alliedmarketresearch.com/ microelectromechanical-system-sensor-market (accessed on 21 October 2022).
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced micro-and nano-gas sensor technology: A review. Sensors 2019, 19, 1285. [CrossRef] [PubMed]
- Niu, G.; Wang, F. A review of MEMS-based metal oxide semiconductors gas sensor in Mainland China. J. Micromech. Microeng. 2022, 32, 054003. [CrossRef]
- Gardner, E.L.; De Luca, A.; Vincent, T.; Jones, R.G.; Gardner, J.W.; Udrea, F. Thermal Conductivity Sensor with Isolating Membrane Holes. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27-30 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1-4.
- Daynes, H.A. Gas Analysis by Measurement of Thermal Conductivity; FOA: Rome, Italy, 1933.
- Szulczy ński, B.; Gębicki, J. Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 2017, 4, 21. [CrossRef]
- Wakeham, W.A. Measurement of the Transport Properties of Fluids; Experimental Thermodynamics Series; Stanford University: Stanford, CA, USA, 1991.
- Assael, M.J.; Antoniadis, K.D.; Metaxa, I.N.; Mylona, S.K.; Assael, J.-A.M.; Wu, J.; Hu, M. A novel portable absolute transient hot-wire instrument for the measurement of the thermal conductivity of solids. Int. J. Thermophys. 2015, 36, 3083-3105. [CrossRef]
- Assael, M.J.; Chen, C.-F.; Metaxa, I.; Wakeham, W.A. Thermal conductivity of suspensions of carbon nanotubes in water. Int. J. Thermophys. 2004, 25, 971-985. [CrossRef]
- Mylona, S.K.; Hughes, T.J.; Saeed, A.A.; Rowland, D.; Park, J.; Tsuji, T.; Tanaka, Y.; Seiki, Y.; May, E.F. Thermal conductivity data for refrigerant mixtures containing R1234yf and R1234ze (E). J. Chem. Thermodyn. 2019, 133, 135-142. [CrossRef]
- Healy, J.J.; De Groot, J.J.; Kestin, J. The theory of the transient hot-wire method for measuring thermal conductivity. Phys. B C 1976, 82, 392-408. [CrossRef]
- Corbino, O.M. Measurement of specific heats of metals at high temperatures. Atti Della R. Accad. Naz. Dei Lincei 1912, 21, 181-188.
- Birge, N.O.; Nagel, S.R. Wide-frequency specific heat spectrometer. Rev. Sci. Instrum. 1987, 58, 1464-1470. [CrossRef]
- Moon, I.K.; Jeong, Y.H.; Kwun, S.I. The 3Ω technique for measuring dynamic specific heat and thermal conductivity of a liquid or solid. Rev. Sci. Instrum. 1996, 67, 29-35. [CrossRef]
- Cahill, D.G.; Pohl, R.O. Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 1987, 35, 4067-4073. [CrossRef]
- Cahill, D.G. Thermal conductivity measurement from 30 to 750 K: The 3Ω method. Rev. Sci. Instrum. 1990, 61, 802-808. [CrossRef]
- Lee, S.-M.; Cahill, D.G. Heat transport in thin dielectric films. J. Appl. Phys. 1997, 81, 2590-2595. [CrossRef]
- Gesele, G.; Linsmeier, J.; Drach, V.; Fricke, J.; Arens-Fischer, R. Temperature-dependent thermal conductivity of porous silicon. J. Phys. Appl. Phys. 1997, 30, 2911-2916. [CrossRef]
- Hu, X.J.; Padilla, A.A.; Xu, J.; Fisher, T.S.; Goodson, K.E. 3-omega measurements of vertically oriented carbon nanotubes on silicon. J. Heat Transf. 2006, 128, 1109-1113. [CrossRef]
- Makarova, E.S.; Novotelnova, A.V. Estimating the uncertainty of measurements of thermal conductivity of thin films of thermo- electrics with the 3-omega method. J. Phys. Conf. Ser. 2021, 2057, 012108. [CrossRef]
- Bogner, M. Thermal Conductivity Measurements of Thin Films Using a Novel 3 Omega Method. Ph.D. Thesis, Northumbria University, Newcastle, UK, 2017.
- Cahill, D.G.; Ford, W.K.; Goodson, K.E.; Mahan, G.D.; Majumdar, A.; Maris, H.J.; Merlin, R.; Phillpot, S.R. Nanoscale thermal transport. J. Appl. Phys. 2003, 93, 793-818. [CrossRef]
- Mingo, N.; Broido, D.A. Length dependence of carbon nanotube thermal conductivity and the "problem of long waves". Nano Lett. 2005, 5, 1221-1225. [CrossRef]
- Banerjee, K.; Wu, G.; Igeta, M.; Amerasekera, A.; Majumdar, A.; Hu, C. Investigation of self-heating phenomenon in small geometry vias using scanning joule expansion microscopy. In Proceedings of the 1999 IEEE International Reliability Physics Symposium Proceedings. 37th Annual (Cat. No. 99CH36296), San Diego, CA, USA, 23-25 March 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 297-302.
- Cahill, D.G.; Goodson, K.; Majumdar, A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 2002, 124, 223-241. [CrossRef]
- Kommandur, S.; Mahdavifar, A.; Hesketh, P.J.; Yee, S. A microbridge heater for low power gas sensing based on the 3-Omega technique. Sens. Actuators Phys. 2015, 233, 231-238. [CrossRef]
- Thundat, T.; Wachter, E.A.; Sharp, S.L.; Warmack, R.J. Detection of mercury vapor using resonating microcantilevers. Appl. Phys. Lett. 1995, 66, 1695-1697. [CrossRef]
- Lai, Y.-T.; Kuo, J.-C.; Yang, Y.-J. A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes. Sens. Actuators Phys. 2014, 215, 83-88. [CrossRef]
- Jaber, N.; Ilyas, S.; Shekhah, O.; Eddaoudi, M.; Younis, M.I. Multimode excitation of a metal organics frameworks coated microbeam for smart gas sensing and actuation. Sens. Actuators Phys. 2018, 283, 254-262. [CrossRef]
- Waggoner, P.S.; Craighead, H.G. Micro-and nanomechanical sensors for environmental, chemical, and biological detection. Lab. Chip 2007, 7, 1238-1255. [CrossRef] [PubMed]
- Hajjaj, A.Z.; Jaber, N.; Alcheikh, N.; Younis, M.I. A sensitive resonant gas sensor based on multimode excitation of a buckled beam. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23-27 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 769-772.
- Harris, H. Concerning a thermometer with solid-state diodes. Sci. Am. 1961, 204, 192.
- McNamara, A.G. Semiconductor diodes and transistors as electrical thermometers. Rev. Sci. Instrum. 1962, 33, 330-333. [CrossRef]
- Mansoor, M.; Haneef, I.; Akhtar, S.; De Luca, A.; Udrea, F. Silicon diode temperature sensors-A review of applications. Sens. Actuators Phys. 2015, 232, 63-74. [CrossRef]
- Meijer, G.C. Thermal sensors based on transistors. Sens. Actuators 1986, 10, 103-125. [CrossRef]
- Kliche, K.; Billat, S.; Hedrich, F.; Ziegler, C.; Zengerle, R. Sensor for gas analysis based on thermal conductivity, specific heat capacity and thermal diffusivity. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23-27 January 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1189-1192.
- De Graaf, G.; Abarca, A.; Ghaderi, M.; Wolffenbuttel, R.F. A MEMS flow compensated thermal conductivity detector for gas sensing. Procedia Eng. 2015, 120, 1265-1268. [CrossRef]
- Rastrello, F.; Placidi, P.; Scorzoni, A.; Cozzani, E.; Messina, M.; Elmi, I.; Zampolli, S.; Cardinali, G.C. Thermal Conductivity Detector for Gas Chromatography: Very Wide Gain Range Acquisition System and Experimental Measurements. IEEE Trans. Instrum. Meas. 2013, 62, 974-981. [CrossRef]
- Kaanta, B.C.; Chen, H.; Lambertus, G.; Steinecker, W.H.; Zhdaneev, O.; Zhang, X. High Sensitivity Micro-Thermal Conductivity Detector for Gas Chromatography. In Proceedings of the 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 25-29 January 2009; pp. 264-267.
- Kaanta, B.C.; Chen, H.; Zhang, X. A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector. J. Micromech. Microeng. 2010, 20, 055016. [CrossRef]
- van der Bent, J.F.; Puik, E.; Tong, H.D.; van Rijn, C.J.M. Temperature balanced hydrogen sensor system with coupled palladium nanowires. Sens. Actuators Phys. 2015, 226, 98-106. [CrossRef]
- Zhang, H.; Shen, B.; Hu, W.; Liu, X. Research on a Fast-Response Thermal Conductivity Sensor Based on Carbon Nanotube Modification. Sensors 2018, 18, 2191. [CrossRef] [PubMed]
- Sun, X.; Ding, X.; Chen, Y.; He, G.; Bao, L. Temperature drift and compensation techniques for the thermal conductivity Gas sensor. In Proceedings of the Ifost, Ulaanbaatar, Mongolia, 28 June-1 July 2013; Volume 2, pp. 32-35.
- Gardner, E.L.W.; De Luca, A.; Udrea, F. Differential Thermal Conductivity CO2 Sensor. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Gainesville, FL, USA, 25-29 January 2021; pp. 791-794.
- Tsilingiris, P.T. Thermophysical and transport properties of humid air at temperature range between 0 and 100 • C. Energy Convers. Manag. 2008, 49, 1098-1110. [CrossRef]
- Simon, I.; Arndt, M. Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications. Sens. Actuators Phys. 2002, 97, 104-108. [CrossRef]
- Arndt, M. Micromachined thermal conductivity hydrogen detector for automotive applications. In Proceedings of the 2002 IEEE SENSORS, Orlando, FL, USA, 12-14 June 2002; Volume 2, pp. 1571-1575.
- Wu, H.; Grabarnik, S.; Emadi, A.; de Graaf, G.; Wolffenbuttel, R.F. Characterization of thermal cross-talk in a MEMS-based thermopile detector array. J. Micromech. Microeng. 2009, 19, 074022. [CrossRef]
- Kuo, J.T.; Yu, L.; Meng, E. Micromachined thermal flow sensors-A review. Micromachines 2012, 3, 550-573. [CrossRef]
- de Graaf, G.; Prouza, A.A.; Ghaderi, M.; Wolffenbuttel, R.F. Micro thermal conductivity detector with flow compensation using a dual MEMS device. Sens. Actuators Phys. 2016, 249, 186-198. [CrossRef]
- Hepp, C.J.; Krogmann, F.T.; Urban, G.A. Flow rate independent sensing of thermal conductivity in a gas stream by a thermal MEMS-sensor-Simulation and experiments. Sens. Actuators Phys. 2017, 253, 136-145. [CrossRef]
- Romero, D.F.R.; Kogan, K.; Cubukcu, A.S.; Urban, G.A. Simultaneous flow and thermal conductivity measurement of gases utilizing a calorimetric flow sensor. Sens. Actuators Phys. 2013, 203, 225-233. [CrossRef]
- Wang, J.; Liu, Y.; Zhou, H.; Wang, Y.; Wu, M.; Huang, G.; Li, T. Thermal Conductivity Gas Sensor with Enhanced Flow-Rate Independence. Sensors 2022, 22, 1308. [CrossRef] [PubMed]
- Cheung, H.; Bromley, L.A.; Wilke, C.R. Thermal conductivity of gas mixtures. AIChE J. 1962, 8, 221-228. [CrossRef]
- Brokaw, R.S. Approximate formulas for the viscosity and thermal conductivity of gas mixtures. J. Chem. Phys. 1958, 29, 391-397.
- Lindsay, A.L.; Bromley, L.A. Thermal conductivity of gas mixtures. Ind. Eng. Chem. 1950, 42, 1508-1511. [CrossRef]
- Mason, E.A.; Saxena, S.C. Approximate formula for the thermal conductivity of gas mixtures. Phys. Fluids 1958, 1, 361-369.
- Monchick, L.; Pereira, A.N.G.; Mason, E.A. Heat conductivity of polyatomic and polar gases and gas mixtures. J. Chem. Phys. 1965, 42, 3241-3256. [CrossRef]
- Zhukov, V.P.; Pätz, M. On thermal conductivity of gas mixtures containing hydrogen. Heat Mass Transf. 2017, 53, 2219-2222.
- Azmi, W.H.; Sharma, K.V.; Mamat, R.; Najafi, G.; Mohamad, M.S. The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids-A review. Renew. Sustain. Energy Rev. 2016, 53, 1046-1058. [CrossRef]
- Terry, S.C.; Jerman, J.H.; Angell, J.B. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 1979, 26, 1880-1886. [CrossRef]
- Mahdavifar, A.; Aguilar, R.; Peng, Z.; Hesketh, P.J.; Findlay, M.; Stetter, J.R.; Hunter, G.W. Simulation and fabrication of an ultra-low power miniature microbridge thermal conductivity gas sensor. J. Electrochem. Soc. 2014, 161, B55-B61. [CrossRef]
- Mahdavifar, A.; Navaei, M.; Hesketh, P.J.; Findlay, M.; Stetter, J.R.; Hunter, G.W. Transient thermal response of micro-thermal conductivity detector (µTCD) for the identification of gas mixtures: An ultra-fast and low power method. Microsyst. Nanoeng. 2015, 1, 15025. [CrossRef]
- Narayanan, S.; Agah, M. A high-performance TCD monolithically integrated with a gas separation column. In Proceedings of the 2012 IEEE SENSORS, Taipei, Taiwan, 28-31 October 2012; pp. 1-4.
- Narayanan, S.; Alfeeli, B.; Agah, M. Two-Port Static Coated Micro Gas Chromatography Column With an Embedded Thermal Conductivity Detector. IEEE Sens. J. 2012, 12, 1893-1900. [CrossRef]
- Legendre, O.; Ruellan, J.; Gely, M.; Arcamone, J.; Duraffourg, L.; Ricoul, F.; Alava, T.; Fain, B. CMOS compatible nanoscale thermal conductivity detector for gas sensing applications. Sens. Actuators Phys. 2017, 261, 9-13. [CrossRef]
- Cruz, D.; Chang, J.P.; Showalter, S.K.; Gelbard, F.; Manginell, R.P.; Blain, M.G. Microfabricated thermal conductivity detector for the micro-ChemLab TM . Sens. Actuators B Chem. 2007, 121, 414-422. [CrossRef]
- Sun, J.; Cui, D.; Chen, X.; Zhang, L.; Cai, H.; Li, H. Design, modeling, microfabrication and characterization of novel micro thermal conductivity detector. Sens. Actuators B Chem. 2011, 160, 936-941. [CrossRef]
- Garg, A.; Akbar, M.; Vejerano, E.; Narayanan, S.; Nazhandali, L.; Marr, L.C.; Agah, M. Zebra GC: A mini gas chromatography system for trace-level determination of hazardous air pollutants. Sens. Actuators B Chem. 2015, 212, 145-154. [CrossRef]
- Qu, H.; Duan, X. Recent advances in micro detectors for micro gas chromatography. Sci. China Mater. 2019, 62, 611-623. [CrossRef]
- Palmisano, V.; Boon-Brett, L.; Bonato, C.; Harskamp, F.; Buttner, W.J.; Post, M.B.; Burgess, R.; Rivkin, C. Evaluation of selectivity of commercial hydrogen sensors. Int. J. Hydrogen Energy 2014, 39, 20491-20496. [CrossRef]
- Buttner, W.J.; Post, M.B.; Burgess, R.; Rivkin, C. An overview of hydrogen safety sensors and requirements. Int. J. Hydrogen Energy 2011, 36, 2462-2470. [CrossRef]
- Harkinezhad, B.; Soleimani, A.; Hossein-Babaei, F. Hydrogen level detection via thermal conductivity measurement using temporal temperature monitoring. In Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April-2 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 408-411.
- Steckelmacher, W.; Tinsley, D.M. Thermal conductivity leak detectors suitable for testing equipment by overpressure or vacuum. Vacuum 1962, 12, 153-159. [CrossRef]
- Boon-Brett, L.; Bousek, J.; Moretto, P. Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations: Part II-selected sensor test results. Int. J. Hydrogen Energy 2009, 34, 562-571. [CrossRef]
- Berndt, D.; Muggli, J.; Wittwer, F.; Langer, C.; Heinrich, S.; Knittel, T.; Schreiner, R. MEMS-based thermal conductivity sensor for hydrogen gas detection in automotive applications. Sens. Actuators Phys. 2020, 305, 111670. [CrossRef]
- Pollak-Diener, G.; Obermeier, E. Heat-conduction microsensor based on silicon technology for the analysis of two-and three- component gas mixtures. Sens. Actuators B Chem. 1993, 13, 345-347. [CrossRef]
- Ma, H.; Qin, S.; Wang, L.; Wang, G.; Zhao, X.; Ding, E. The study on methane sensing with high-temperature low-power CMOS compatible silicon microheater. Sens. Actuators B Chem. 2017, 244, 17-23. [CrossRef]
- Puente, D.; Gracia, F.J.; Ayerdi, I. Thermal conductivity microsensor for determining the Methane Number of natural gas. Sens. Actuators B Chem. 2005, 110, 181-189. [CrossRef]
- Dent, A.G.; Sutedja, T.G.; Zimmerman, P.V. Exhaled breath analysis for lung cancer. J. Thorac. Dis. 2013, 5, S540-S550.
- Ohira, S.-I.; Toda, K. Micro gas analyzers for environmental and medical applications. Anal. Chim. Acta 2008, 619, 143-156.
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Si: WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 2010, 82, 3581-3587. [CrossRef]
- Liu, S.-J.; Chen, Z.-Y.; Chang, Y.-Z.; Wang, S.-L.; Li, Q.; Fan, Y.-Q. Xenon Responding Analyzed by Using Micro-Thermal Conductivity Detector for Gas Chromatography. Fenxi Huaxue 2012, 40, 1130-1134. [CrossRef]
- Luginbühl, M.; Lauber, R.; Feigenwinter, P.; Zbinden, A.M. Monitoring xenon in the breathing circuit with a thermal conductivity sensor. J. Clin. Monit. Comput. 2002, 17, 23-30. [CrossRef]
- Houston, T.E. Methods for the determination of water in coatings. Met. Finish. 1997, 95, 36-38. [CrossRef]
- Nussbaum, R.; Lischke, D.; Paxmann, H.; Wolf, B. Quantitative GC determination of water in small samples. Chromatographia 2000, 51, 119-121. [CrossRef]
- O'Keefe, W.K.; Ng, F.T.T.; Rempel, G.L. Validation of a gas chromatography/thermal conductivity detection method for the determination of the water content of oxygenated solvents. J. Chromatogr. A 2008, 1182, 113-118. [CrossRef] [PubMed]
- Weatherly, C.A.; Woods, R.M.; Armstrong, D.W. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection. J. Agric. Food Chem. 2014, 62, 1832-1838. [CrossRef] [PubMed]
- Wilfert, S.; Edelmann, C. Miniaturized vacuum gauges. J. Vac. Sci. Technol. Vac. Surf. Films 2004, 22, 309-320. [CrossRef]
- Kerkeni, C.; BenJemaa, F.; Kooli, S.; Farhat, A.; Maalej, M. Performance evaluation of a thermodynamic solar power plant: Fifteen years of operation history. Renew. Energy 2002, 25, 473-487. [CrossRef]
- Van Herwaarden, A.W.; Sarro, P.M.; Meijer, H.C. Integrated vacuum sensor. Sens. Actuators 1985, 8, 187-196. [CrossRef]
- Paul, O.; Brand, O.; Lenggenhager, R.; Baltes, H. Vacuum gauging with complementary metal-oxide-semiconductor microsensors. J. Vac. Sci. Technol. Vac. Surf. Films 1995, 13, 503-508. [CrossRef]
- Paul, O.; Haberli, A.; Malcovati, P.; Baltes, H. Novel integrated thermal pressure gauge and read-out circuit by CMOS IC technology. In Proceedings of the 1994 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 11-14 December 1994; IEEE: Piscataway, NJ, USA, 1994; pp. 131-134.
- Mastrangelo, C.H.; Muller, R.S. Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor. IEEE J. Solid-State Circuits 1991, 26, 1998-2007. [CrossRef]
- Wang, J.; Tang, Z.; Li, J. Tungsten-microhotplate-array-based pirani vacuum sensor system with on-chip digital front-end processor. J. Microelectromech. Syst. 2011, 20, 834-841. [CrossRef]
- Piotto, M.; Del Cesta, S.; Bruschi, P. A CMOS compatible micro-Pirani vacuum sensor based on mutual heat transfer with 5-decade operating range and 0.3 Pa detection limit. Sens. Actuators Phys. 2017, 263, 718-726. [CrossRef]
- Stark, B.H.; Najafi, K. A low-temperature thin-film electroplated metal vacuum package. J. Microelectromech. Syst. 2004, 13, 147-157. [CrossRef]
- Topalli, E.S.; Topalli, K.; Alper, S.E.; Serin, T.; Akin, T. Pirani vacuum gauges using silicon-on-glass and dissolved-wafer processes for the characterization of MEMS vacuum packaging. IEEE Sens. J. 2009, 9, 263-270. [CrossRef]
- Feng, F.; Tian, B.; Hou, L.; Yu, Z.; Zhou, H.; Ge, X.; Li, X. High sensitive micro thermal conductivity detector with sandwich structure. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18-22 June 2017; 2017; pp. 1433-1436.
- Wang, J.Q.; Tang, Z.A. A CMOS-compatible temperature sensor based on the gaseous thermal conduction dependent on temperature. Sens. Actuators Phys. 2012, 176, 72-77. [CrossRef]
- Sarfraz, S.; Kumar, R.V.; Udrea, F. A high temperature and low power SOI CMOS MEMS based thermal conductivity gas sensor. In Proceedings of the CAS 2013 (International Semiconductor Conference), Sinaia, Romania, 14-16 October 2013; Volume 1, pp. 51-54.
- Struk, D.; Shirke, A.; Mahdavifar, A.; Hesketh, P.J.; Stetter, J.R. Investigating time-resolved response of micro thermal conductivity sensor under various modes of operation. Sens. Actuators B Chem. 2018, 254, 771-777. [CrossRef]
- Kawano, T.; Chiamori, H.C.; Suter, M.; Zhou, Q.; Sosnowchik, B.D.; Lin, L. An Electrothermal Carbon Nanotube Gas Sensor. Nano Lett. 2007, 7, 3686-3690. [CrossRef] [PubMed]
- Zou, Z.; Zhang, H.; Sun, Y.; Gao, Y.; Dou, L. A thermal conductivity sensor based on mixed carbon material modification for hydrogen detection. Rev. Sci. Instrum. 2022, 93, 035001. [CrossRef]
- Cho, W.; Kim, T.; Shin, H. Thermal conductivity detector (TCD)-type gas sensor based on a batch-fabricated 1D nanoheater for ultra-low power consumption. Sens. Actuators B Chem. 2022, 371, 132541. [CrossRef]
- Sosna, C.; Buchner, R.; Lang, W. A temperature compensation circuit for thermal flow sensors operated in constant-temperature- difference mode. IEEE Trans. Instrum. Meas. 2010, 59, 1715-1721. [CrossRef]
- Ferreira, R.P.C.; Freire, R.C.S.; Deep, C.S.; de Rocha Neto, J.S.; Oliveira, A. Hot-wire anemometer with temperature compensation using only one sensor. IEEE Trans. Instrum. Meas. 2001, 50, 954-958. [CrossRef]
- Kielbasa, J.; Ligeza, P. Temperature-compensated single hot-wire anemometer. In Tagung Turbulente Ein-und Mehrphasenstrmungen; Institut für Mechanik: Darmstadt, Germany, 1991; pp. 75-86.
- Xu, W.; Gao, B.; Ma, S.; Zhang, A.; Chiu, Y.; Lee, Y.-K. Low-cost temperature-compensated thermoresistive micro calorimetric flow sensor by using 0.35 µm CMOS MEMS technology. In Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24-28 January 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 189-192.
- Cai, Z.; van Veldhoven, R.H.M.; Falepin, A.; Suy, H.; Sterckx, E.; Bitterlich, C.; Makinwa, K.A.A.; Pertijs, M.A.P. A Ratiometric Readout Circuit for Thermal-Conductivity-Based Resistive CO2 Sensors. IEEE J. Solid-State Circuits 2016, 51, 2463-2474. [CrossRef]
- Ali, H.A.; Pirro, M.; Poulichet, P.; CESAR, W.; Marty, F.; AZZOUZ, I.; Gnambodoe-Capochichi, M.; Nefzaoui, E.; Bourouina, T. Thermal aspects of a micro thermal conductivity detector for micro gas chromatography. In Proceedings of the 2019 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), Paris, France, 12-15 May 2019; IEEE: Paris, France, 2019; pp. 1-6.
- Udina, S.; Carmona, M.; Carles, G.; Santander, J.; Fonseca, L.; Marco, S. A micromachined thermoelectric sensor for natural gas analysis: Thermal model and experimental results. Sens. Actuators B Chem. 2008, 134, 551-558. [CrossRef]
- Gardner, E.L.; Vincent, T.A.; De Luca, A.; Udrea, F. Simultaneous Flow and Thermal Conductivity Sensing on a Single Chip Using Artificial Neural Networks. IEEE Sens. J. 2020, 20, 4985-4991. [CrossRef]
- Randjelović, D.V. Analytical Modelling Approach in Study of the Transient Response of Thermopile-Based MEMS Sensors Applied for Simultaneous Detection of Pressure and Gas Composition. In Proceedings of the 2018 International Semiconductor Conference (CAS), Sinaia, Romania, 10-12 October 2018; pp. 27-34.
- Cai, Z.; van Veldhoven, R.; Suy, H.; de Graaf, G.; Makinwa, K.A.A.; Pertijs, M.A.P. A Phase-Domain Readout Circuit for a CMOS-Compatible Hot-Wire CO2 Sensor. IEEE J. Solid-State Circuits 2018, 53, 3303-3313. [CrossRef]
- Sun, J.; Chen, T.; Tan, T.; Wang, D.; Zhu, X.; Zhang, X.; Peng, H.; Luan, Z. Fabrication and Characterization of a Novel Micro-Thermal Conductivity Detector for Monitoring Small-molecule Gases. IEEE Sens. J. 2020, 20, 11115-11121. [CrossRef]
- Harumoto, T.; Fujiki, H.; Shi, J.; Nakamura, Y. Extremely simple structure hydrogen gas sensor based on single metallic thin-wire under sweep heating. Int. J. Hydrogen Energy 2022, 47, 34291-34298. [CrossRef]
- Lotfi, A.; Navaei, M.; Hesketh, P.J. A Platinum Cantilever-Based TCD for 3-Omega Sensing of Gas Mixtures. ECS Trans. 2018, 86, 79-86. [CrossRef]
- Lotfi, A.; Navaei, M.; Hesketh, P.J. A Platinum Cantilever-Based Thermal Conductivity Detector for Ammonia Sensing Using the 3-Omega Technique. ECS J. Solid State Sci. Technol. 2019, 8, Q126-Q133. [CrossRef]
- Lotfi, A.; Navaei, M.; Hesketh, P.J. Balanced Dual Platinum Micro-Cantilever Thermal Conductivity Gas Sensor Using 3-Omega Technique. ECS Meet. Abstr. 2021, MA2021-01, 1547. [CrossRef]
- Gardner, J.W.; Bartlett, P.N. Electronic Noses: Principles and Applications; Oxford University Press on Demand: Oxford, UK, 1999.
- Sadek, K.; Moussa, W. Assessment of the Effect of Micro-Fabrication Uncertainties on the Sensitivity of Gas Sensors Using 3-D Finite Element Modeling. In Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04), Banff, AB, Canada, 25-27 August 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 663-665.
- Son, K.; Liao, A.; Lung, G.; Gallegos, M.; Hatake, T.; Harris, R.D.; Scheick, L.Z.; Smythe, W.D. GaN-based high temperature and radiation-hard electronics for harsh environments. Nanosci. Nanotechnol. Lett. 2010, 2, 89-95. [CrossRef]
- Lee, A.P.; Reedy, B.J. Temperature modulation in semiconductor gas sensing. Sens. Actuators B Chem. 1999, 60, 35-42. [CrossRef]
- Urasinska-Wojcik, B.; Gardner, J.W. Identification of H2S impurity in hydrogen using temperature modulated metal oxide resistive sensors with a novel signal processing technique. IEEE Sens. Lett. 2017, 1, 1-4. [CrossRef]
- Li, F.; Jin, H.; Wang, J.; Zou, J.; Jian, J. Selective sensing of gas mixture via a temperature modulation approach: New strategy for potentiometric gas sensor obtaining satisfactory discriminating features. Sensors 2017, 17, 573. [CrossRef] [PubMed]
- Durán, C.; Benjumea, J.; Carrillo, J. Response optimization of a chemical gas sensor array using temperature modulation. Electronics 2018, 7, 54. [CrossRef]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on smart gas sensing technology. Sensors 2019, 19, 3760.
- Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.