Non‐volatile memory devices based on Ge nanocrystals
2015, physica status solidi (a)
https://doi.org/10.1002/PSSA.201532376Abstract
The article presents the fabrication and characterization of NV (non‐volatile) memory devices based on SiO2/Ge/SiO2 trilayer structures on Si wafers. The trilayer structures were obtained by using the magnetron sputtering method for the deposition of gate SiO2 and intermediate Ge layers and the rapid thermal oxidation for the growth of tunnel SiO2 layer. Rapid thermal annealing was performed for obtaining Ge nanocrystals embedded in the SiO2 gate oxide, as charge‐storage elements. Two NV cross bar memory structures based on two cell sizes of 300 × 300 and 100 × 100 μm2 were manufactured. Capacity–voltage curves were measured on the memory devices, at different frequencies in the 1 kHz–10 MHz range at room temperature (RT) for evidencing the hysteresis loops and for showing that the devices keep memory in time at these frequencies. We have obtained capacity–voltage hysteresis curves with large memory window up to 2 V. We demonstrate that the trilayer structure SiO2/Ge/SiO2/on Si with...
References (17)
- J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, Nanoscale Res. Lett. 9, 526 (2014).
- T.-C. Chang, F.-Y. Jian, S.-C. Chen, and Y.-T. Tsai, Mater. Today 14, 608 (2011).
- W. K. Choi, W. K. Chim, C. L. Heng, and L. W. Teo, Appl. Phys. Lett. 80, 2014 (2002).
- W.-T. Lai, K.-C. Yang, T.-C. Hsu, P.-H. Liao, T. George, and P.-W. Li, Nanoscale Res. Lett. 10, 224 (2015).
- S. Das, R. Aluguri, S. Manna, R. Singha, A. Dhar, L. Pavesi, and S. K. Ray, Nanoscale Res. Lett. 7, 143 (2012).
- J. Mart ın-S anchez, A. Chahboun, M. J. M. Gomes, A. G. Rolo, B. Pivac, and I. Capan, Phys. Status Solidi RRL 6, 223 (2012).
- C. Bonafos, M. Carrada, G. Benassayag, S. Schamm- Chardon, J. Groenen, V. Paillard, B. Pecassou, A. Claverie, P. Dimitrakis, E. Kapetanakis, V. Ioannou-Sougleridis, P. Normand, B. Sahu, and A. Slaoui, Mater. Sci. Semicond. Proc. 15, 615 (2012).
- S. H. Hong, M. C. Kim, P. S. Jeong, S.-H. Choi, Y.-S. Kim, and K. J. Kim, Appl. Phys. Lett. 92, 093124 (2008).
- M. L. Ciurea and A. M. Lepadatu, Dig. J. Nanomater. Biostruct. 10, 59 (2015).
- I. Stavarache, A. M. Lepadatu, T. Stoica, and M. L. Ciurea, Appl. Surf. Sci. 285, 175 (2013).
- W.-R. Chen, T.-C. Chang, P.-T. Liu, C.-H. Tu, J.-L. Yeh, Y.-T. Hsieh, R.-Y. Wang, and C.-Y. Chang, Surf. Coat. Technol. 202, 1333 (2007).
- W.-R. Chen, T.-C. Chang, Y.-T. Hsieh, and C.-Y. Chang, IEEE Trans. Nanotechnol. 8, 185 (2009).
- S. K. Ray, S. Maikap, W. Banerjee, and S. Das, J. Phys. D, Appl. Phys. 46, 153001 (2013).
- I. Berbezier, A. Karmous, A. Ronda, T. Stoica, L. Vescan, R. Geurt, A. Olzierski, E. Tsoi, and A. G. Nassiopoulou, J. Phys.: Conf. Ser. 10, 73 (2005).
- A. M. Lepadatu, T. Stoica, I. Stavarache, V. S. Teodorescu, D. Buca, and M. L. Ciurea, J. Nanopart. Res. 15, 1981 (2013).
- I. Stavarache, A. M. Lepadatu, A. V. Maraloiu, V. S. Teodorescu, and M. L. Ciurea, J. Nanopart. Res. 14, 930 (2012).
- M. Buljan, J. Grenzer, V. Hol y, N. Radi c, T. Mi si c-Radi c, S. Levichev, S. Bernstorff, B. Pivac, and I. Capan, Appl. Phys. Lett. 97, 163117 (2010).