Robust Trend Estimation for AR(1) Disturbances
2016, Austrian Journal of Statistics
https://doi.org/10.17877/DE290R-7233Abstract
We discuss the robust estimation of a linear trend if the noise follows an autoregressive process of first order. We find the ordinary repeated median to perform well except for negative correlations. In this case it can be improved by a Prais-Winsten transformation using a robust autocorrelation estimator. Zusammenfassung: Wir behandeln die robuste Schätzung eines linearen Trends bei autoregressiven Fehlern erster Ordnung. Die Repeated Median Regression zeigt ein gutes Verhalten bei positiven Korrelationen. Bei negativen Korrelationen ist eine Verbesserung durch eine Prais-Winsten Transformation mittels eines robusten Korrelationsschätzers möglich.
References (16)
- M. Beach and J.G. MacKinnon. A maximum likelihood procedure for regression with autocorrelated errors. Econometrica. 46:51-58, 1978.
- J.S. Chipman. Efficiency of least-squares estimation of linear trend when residuals are autocorrelated. Econometrica. 47:115-128, 1979.
- P.L. Davies, R. Fried, and U. Gather. Robust signal extraction for on-line monitoring data. J. Statistical Planning and Inference. 122:65-78, 2004.
- R. Fried. Robust trend extraction. In S. Aivazian, P. Filzmoser, and Y. Kharin, Y., editors, Proceedings of the 7th International Conference Computer Data Analysis and Modeling.
- Vol. I, pages 23-30. Academy of Administration at the President of the Republic of Be- larus, Minsk, 2004.
- W. Krämer. Finite sample efficiency of ordinary least squares in the linear regression model with autocorrelated errors. J. Amer. Statist. Assoc. 75:1005-1009, 1980.
- W. Krämer. Note on estimating linear trend when residuals are autocorrelated. Econo- metrica 50:1065-1067, 1982.
- Y. Ma and M.G. Genton. Highly robust estimation of the autocovariance function. J. Time Series Analysis. 21:663-684, 2000.
- A. Maeshiro. Autoregressive transformations, trended independent variables and autocor- related disturbance terms. Review of Economics and Statistics. 58:497-500, 1976.
- J. Matousek, D.M. Mount, and N.S. Netanyahu. Efficient randomized algorithms for the repeated median line estimator. Algorithmica. 20:136-150, 1998.
- S.G. Meintanis and G.S. Donatos. Finite-sample performance of alternative estimators for autoregressive models in the presence of outliers. Computational Statistics & Data Analysis 31:323-339, 1999.
- R.E. Park and B.M. Mitchell. Estimating the autocorrelated error model with trended data. J. Econometrics. 13:185-201, 1980.
- P.J. Rousseeuw and Ch. Croux. Alternatives to the Median Absolute Deviation. J. Amer. Statist. Assoc. 88:1273-1283, 1993.
- P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection. Wiley, New York, 1987.
- A.F. Siegel. Robust regression using repeated medians. Biometrika. 69:242-244, 1982.
- D. Steman and G. Trenkler. Some further results on the efficiency of the Cochrane-Orcutt- estimator. J. Statistical Planning and Inference. 88:205-214, 2000.