Academia.eduAcademia.edu

Outline

Unified Models of Dark Energy and Dark Matter

2014

Abstract

I would like to thank Prof. Pedro Avelino for his patience, encouragement and guidance throughout this work. From all my friends and colleagues, a special thanks to Miguel Ferreira, for his friendship and fruitful discussions. A true friend that gave me support during such stressful times. I want to thank Fábio Domingues for the processing capacity. I'm also grateful to Catarina for improving my mood.

References (69)

  1. A. Einstein, The foundation of the general theory of relativity, Annalen Phys. 49 (1916), 729
  2. A. Einstein, Cosmological considerations in the General Theory of Relativity, Sitzungsber. Preuss. Akad. Wiss. Phys-math. Klasse VI (1917), 142
  3. E. Hubble, A relation betweem distance and radial velocity among extra-galactic nebulae, Proc. Nat. Acad. Sci. 15 (1929), 168
  4. A. Friedmann, On the possibility of a world with constant negative curvature of space, Z. Phys. 21 (1924), 326
  5. G. Lemaître, A homogeneous universe of constant mass and growing radius ac- counting for the radial velocity of extragalactic nebulae, Ann. SOc. Sci. Bruxelles, Ser. 1, 47 (1927), 49
  6. A. G. Riess et al., Observational evidence from supernovae for an accelerating uni- verse and a cosmological constant, Astron. J. 116 (1998), 1009.
  7. S. Perlmutter et al., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517 (1999), 565.
  8. M. Kunz and D. Sapone, Dark energy versus modified gravity, Phys. Rev. Lett. 98 (2007), 121301
  9. A.Y. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B 511, 265 (2001)
  10. Bento M. C., Bertolami O., Sen A. A., 2002, Phys. Rev. D, 66, 043507
  11. Sandvik H., Tegmark M., Zaldarriaga, M., Waga I., Phys. Rev. D, 69, 123524
  12. L. M. G. Beca, P. P. Avelino, J. P. M. de Carvalho, and C. J. A. P. Martins. The role of baryons in unified dark matter models. Phys. Rev., D67:101301, 2003
  13. S. Veeraraghavan and A.Stebbins, Astrophys. J. 365, 37 (1990), CfA-3088
  14. P.P. Avelino, K.Bolejko and G.F. Lewis. Nonlinear Chaplygin gas cosmologies. Phys. Rev., D89:103004, 2014
  15. H. B. Benaoum. Accelerated Universe from Modified Chaplygin Gas and Tachyonic Fluid. ArXiv e-prints, arXiv: hep-th/0205140 , May 2002
  16. U. Debnath, A. Banerjee, and S. Chakraborty. Role of modified Chaplygin gas in accelerated universe. Classical and Quantum Gravity , 21:5609-5617, December 2004
  17. M. Bordemann and J. Hoppe. The dynamics of relativistic membranes. Reduction to 2-dimensional fluid dynamics. Physics Letters B , 317:315-320, November 1993
  18. R. Jackiw. A Particle Field Theorist's Lectures on Supe rsymmetric, Non-Abelian Fluid Mechanics and d-Branes. ArXive e-prints, arXiv: physics/0010042 , October 2000
  19. P.P. Avelino, L.M.G. Beça, and C.J.A.P. Martins. Linear and non-Linear Instabil- ities in Unified Dark Energy Models. Phys.Rev. D77 (2008) 063515
  20. L.M.G. Beça and P.P.Avelino. Dynamics of perfect fluid Unified Dark Energy mod- els. (2008)
  21. PAMELA Collaboration, O. Adriani et al. , An anomalous positron abun- dance in cosmic rays with energies 1.5-100 GeV , Nature 458 (2009) 607-609, [ arXiv:0810.4995 ]
  22. O. Adriani et al. , A new measurement of the antiproton-to-proton flux ratio up t o 100 GeV in the cosmic radiation , Phys. Rev. Lett. 102 (2009) 051101, [ arXiv:0810.4994 ]
  23. DAMA Collaboration, R. Bernabei et al. , Search for WIMP annual modulation signature: Results from DAMA / NaI-3 and DAMA / NaI-4 and the global combi ned analysis , Phys. Lett. B480 (2000) 23-31
  24. Jonathan H. Davis. Fitting the annual modulation in DAMA with neutrons from muons and neutrinos [arXiv:1407.1052] (2014)
  25. Andrea Gabrielli, Francesco Labini, Michael Joyce, and Luciano Pietronero. Statis- tical Physics for Cosmic Structures. Springer, 2005
  26. P.P. Avelino et al. The ΛCDM Limit of the Generalized Chaplygin Gas Scenario; JCAP09(2003)002
  27. Cosmological Effects of a Class of Fluid Dark Energy Models; D. Caturan and F. Finelli, Phys. Rev. D68 (2003) 103501
  28. WMAP and the Generalized Chaplygin Gas; Amendola, F. Finelli, C. Burigana and D. Caturan, JCAP 0307 (2003) 005
  29. Expected Constraints on the Generalized Chaplygin Equation of State from Future Supernova Experiments and Gravitational Lensing Statistics; P.T. Silva and O. Bertolami, Ap. J. 599 (2003) 829
  30. P. A. R. Ade et al. (Planck Collaboration) (2013), 1303.5076.
  31. Douglas Clowe et al. A direct empirical proof of the existence of dark matter. Astrophys. J., 648:L109-L113, 2006.
  32. Marusa Bradac et al. Strong and weak lensing united iii: Measuring the mass distribution of the merging galaxy cluster 1e0657-56. Astrophys. J., 652:937-947, 2006.
  33. D.J. Eisenstein et al. [SDSS Collaboration], Detection of the baryon acoustic peak in the large-scale correlation function of the SDSS luminous red galaxies, Astrophys. J. 633 (2005), 560.
  34. M. Tegmark et al. [SDSS Collaboration], Cosmological constraints from the SDSS luminous red galaxies, Phys. Rev. D 74 (2006), 123507.
  35. N. Suzuki, D. Rubin, C.Lidman, G. Aldering, and R. Amanullah et al., Astrophys. J 746, 85 (2012).
  36. Viatcheslav F. Mukhanov, H. A. Feldman, and Robert H. Brandenberger. Theory of cosmological perturbations. Part 1 Classical perturbations. Part 2 Quantum theory of perturbations. Part 3 extensions. Phys. Rept., 215:203 -333, 1992.
  37. Edmund Bertschinger. Cosmological dynamics: Course 1. 1993.
  38. Viatcheslav Mukhanov. Physical Fundations of Cosmology. Cambridge University Press, 2005.
  39. Lifshitz E M (1946) J. Phys. (USSR), 10, 116
  40. Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies, Reid, B.A., et.al. (2009, arXiv:0907.1659).
  41. H. Kodama & M. Sasaki, Prog. Theor. Phys. Suppl. 78 (1984) 1.
  42. J. M. Bardeen, Particle Physics and Cosmology, in: ed. A. Zee (Gordon and Breach, New York, 1989).
  43. G. Jungman, M. Kamionkowski, K. Griest. Supersymmetric Dark Matter. arXiv:hep-ph/9506380
  44. D. S. Akerib et al. (LUX Collaboration). D. S. Akerib et al. (LUX Collaboration). Phys. Rev. Lett. 112, 091303 (2014)
  45. Hans Stephani, Dietrich Krames, Malcolm MacCallum, Cornelius Hoenselaers, and Eduard Herlt. Exact Solutions of Einstein's Field Equations. Cambridge University Press, 2003.
  46. Thomas Buchert. Dark energy from structure -a status report. 2007.
  47. Thomas Buchert, Syksy Räsänen. Backreaction in late-time cosmology. arXiv:1112.5335 (2012).
  48. Naoshi Sugiyama. Cosmic Background Anisotropies in CDM Cosmology. arXiv:astro-ph/9412025.
  49. R. Colistete Jr., J.C. Fabris. Bayesian Analysis of the (Generalized) Chaplygin Gas and Cosmological Constant Models using the 157 gold SNe Ia Data. arXiv astro- ph/0501519 (2014).
  50. A. V. Filippenko, Type Ia Supernovae and cosmology , astro-ph:0410609.
  51. Y. Wang, D.Wands, L. Xu, J. De-Santiago , A. Hojjati. Cosmological constraints on a decomposed Chaplygin gas. arXiv:1301.5315.
  52. S. Cole et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications. arXiv:astro-ph/0501174
  53. Buchdahl, H. A. (1970). Non-linear Lagrangians and cosmological theory. Monthly Notices of the Royal Astronomical Society 150: 1-8.
  54. C. Brans and R.Dicke. Mach's principle and a relativistic theory of gravitation. Phys. Rev. 124 (1961), 925.
  55. Mordehai Milgrom. Mond, a pedagogical review. Acta Phys. Polon., B32:3613, 2001.
  56. Jacob D. Bekenstein. Relativistic gravitation theory for the MOND paradigm. Phys. Rev., D70:083509, 2004.
  57. Sachs, R. K.; Wolfe, A. M. (1967). Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. Astrophysical Journal 147: 73.
  58. Yuting Wang, Yuan-Xing Gui, Lixin Xu, Jianbo Lu. The Integrated Sachs-Wolfe Effect in Time Varying Vacuum Model. arXiv:1004.3341
  59. Luca Amendola, Shinji Tsujikawa. Dark Energy: Theory and Observations (2010)
  60. Scott Dodelson. Modern Cosmology (2003)
  61. Moshe Carmeli. Classical Fields: General Relativity and Gauge Theory (2001)
  62. J.M. Bardeen, J.R. Bond, N.Kaiser, and A. S. Szalay. The statistics of peaks of Gaussian random fields. Astrophys. J. 304 (1986), 15
  63. S. Weinberg. The cosmological constant problem, Mod. Phys. Rev. 61 (1989) 527.
  64. T. Padmanabhan. Structure Formation in the Universe
  65. G.F.R. Ellis. Relativistic cosmology: its nature, aims and problems. General Rela- tivity and Gravitation, pp. 215-288
  66. L.Amendola, I.Waga, and F.Finelli. Observational constraints on silent quartessence. JCAP 0511 (2005), 009
  67. D.Pietrobon, A.Balbi, M.Bruni, and C.Quercellini. Affine parameterization of the dark sector: constrains from WMAP 5 and SDSS. Phys. Rev. D 78 (2008), 083510.
  68. D. Bertacca, S.Matarrese, and M.Pietroni. Unified dark matter in scalar field cos- mologies. Mod. Phys. Lett. A 22 (2007), 2893.
  69. P.P.Avelino et al. The onset of the nonlinear regime in unified dark matter models. Phys. Rev. D 68 (2004), 041301