Unified Models of Dark Energy and Dark Matter
2014
Abstract
I would like to thank Prof. Pedro Avelino for his patience, encouragement and guidance throughout this work. From all my friends and colleagues, a special thanks to Miguel Ferreira, for his friendship and fruitful discussions. A true friend that gave me support during such stressful times. I want to thank Fábio Domingues for the processing capacity. I'm also grateful to Catarina for improving my mood.
References (69)
- A. Einstein, The foundation of the general theory of relativity, Annalen Phys. 49 (1916), 729
- A. Einstein, Cosmological considerations in the General Theory of Relativity, Sitzungsber. Preuss. Akad. Wiss. Phys-math. Klasse VI (1917), 142
- E. Hubble, A relation betweem distance and radial velocity among extra-galactic nebulae, Proc. Nat. Acad. Sci. 15 (1929), 168
- A. Friedmann, On the possibility of a world with constant negative curvature of space, Z. Phys. 21 (1924), 326
- G. Lemaître, A homogeneous universe of constant mass and growing radius ac- counting for the radial velocity of extragalactic nebulae, Ann. SOc. Sci. Bruxelles, Ser. 1, 47 (1927), 49
- A. G. Riess et al., Observational evidence from supernovae for an accelerating uni- verse and a cosmological constant, Astron. J. 116 (1998), 1009.
- S. Perlmutter et al., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517 (1999), 565.
- M. Kunz and D. Sapone, Dark energy versus modified gravity, Phys. Rev. Lett. 98 (2007), 121301
- A.Y. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B 511, 265 (2001)
- Bento M. C., Bertolami O., Sen A. A., 2002, Phys. Rev. D, 66, 043507
- Sandvik H., Tegmark M., Zaldarriaga, M., Waga I., Phys. Rev. D, 69, 123524
- L. M. G. Beca, P. P. Avelino, J. P. M. de Carvalho, and C. J. A. P. Martins. The role of baryons in unified dark matter models. Phys. Rev., D67:101301, 2003
- S. Veeraraghavan and A.Stebbins, Astrophys. J. 365, 37 (1990), CfA-3088
- P.P. Avelino, K.Bolejko and G.F. Lewis. Nonlinear Chaplygin gas cosmologies. Phys. Rev., D89:103004, 2014
- H. B. Benaoum. Accelerated Universe from Modified Chaplygin Gas and Tachyonic Fluid. ArXiv e-prints, arXiv: hep-th/0205140 , May 2002
- U. Debnath, A. Banerjee, and S. Chakraborty. Role of modified Chaplygin gas in accelerated universe. Classical and Quantum Gravity , 21:5609-5617, December 2004
- M. Bordemann and J. Hoppe. The dynamics of relativistic membranes. Reduction to 2-dimensional fluid dynamics. Physics Letters B , 317:315-320, November 1993
- R. Jackiw. A Particle Field Theorist's Lectures on Supe rsymmetric, Non-Abelian Fluid Mechanics and d-Branes. ArXive e-prints, arXiv: physics/0010042 , October 2000
- P.P. Avelino, L.M.G. Beça, and C.J.A.P. Martins. Linear and non-Linear Instabil- ities in Unified Dark Energy Models. Phys.Rev. D77 (2008) 063515
- L.M.G. Beça and P.P.Avelino. Dynamics of perfect fluid Unified Dark Energy mod- els. (2008)
- PAMELA Collaboration, O. Adriani et al. , An anomalous positron abun- dance in cosmic rays with energies 1.5-100 GeV , Nature 458 (2009) 607-609, [ arXiv:0810.4995 ]
- O. Adriani et al. , A new measurement of the antiproton-to-proton flux ratio up t o 100 GeV in the cosmic radiation , Phys. Rev. Lett. 102 (2009) 051101, [ arXiv:0810.4994 ]
- DAMA Collaboration, R. Bernabei et al. , Search for WIMP annual modulation signature: Results from DAMA / NaI-3 and DAMA / NaI-4 and the global combi ned analysis , Phys. Lett. B480 (2000) 23-31
- Jonathan H. Davis. Fitting the annual modulation in DAMA with neutrons from muons and neutrinos [arXiv:1407.1052] (2014)
- Andrea Gabrielli, Francesco Labini, Michael Joyce, and Luciano Pietronero. Statis- tical Physics for Cosmic Structures. Springer, 2005
- P.P. Avelino et al. The ΛCDM Limit of the Generalized Chaplygin Gas Scenario; JCAP09(2003)002
- Cosmological Effects of a Class of Fluid Dark Energy Models; D. Caturan and F. Finelli, Phys. Rev. D68 (2003) 103501
- WMAP and the Generalized Chaplygin Gas; Amendola, F. Finelli, C. Burigana and D. Caturan, JCAP 0307 (2003) 005
- Expected Constraints on the Generalized Chaplygin Equation of State from Future Supernova Experiments and Gravitational Lensing Statistics; P.T. Silva and O. Bertolami, Ap. J. 599 (2003) 829
- P. A. R. Ade et al. (Planck Collaboration) (2013), 1303.5076.
- Douglas Clowe et al. A direct empirical proof of the existence of dark matter. Astrophys. J., 648:L109-L113, 2006.
- Marusa Bradac et al. Strong and weak lensing united iii: Measuring the mass distribution of the merging galaxy cluster 1e0657-56. Astrophys. J., 652:937-947, 2006.
- D.J. Eisenstein et al. [SDSS Collaboration], Detection of the baryon acoustic peak in the large-scale correlation function of the SDSS luminous red galaxies, Astrophys. J. 633 (2005), 560.
- M. Tegmark et al. [SDSS Collaboration], Cosmological constraints from the SDSS luminous red galaxies, Phys. Rev. D 74 (2006), 123507.
- N. Suzuki, D. Rubin, C.Lidman, G. Aldering, and R. Amanullah et al., Astrophys. J 746, 85 (2012).
- Viatcheslav F. Mukhanov, H. A. Feldman, and Robert H. Brandenberger. Theory of cosmological perturbations. Part 1 Classical perturbations. Part 2 Quantum theory of perturbations. Part 3 extensions. Phys. Rept., 215:203 -333, 1992.
- Edmund Bertschinger. Cosmological dynamics: Course 1. 1993.
- Viatcheslav Mukhanov. Physical Fundations of Cosmology. Cambridge University Press, 2005.
- Lifshitz E M (1946) J. Phys. (USSR), 10, 116
- Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies, Reid, B.A., et.al. (2009, arXiv:0907.1659).
- H. Kodama & M. Sasaki, Prog. Theor. Phys. Suppl. 78 (1984) 1.
- J. M. Bardeen, Particle Physics and Cosmology, in: ed. A. Zee (Gordon and Breach, New York, 1989).
- G. Jungman, M. Kamionkowski, K. Griest. Supersymmetric Dark Matter. arXiv:hep-ph/9506380
- D. S. Akerib et al. (LUX Collaboration). D. S. Akerib et al. (LUX Collaboration). Phys. Rev. Lett. 112, 091303 (2014)
- Hans Stephani, Dietrich Krames, Malcolm MacCallum, Cornelius Hoenselaers, and Eduard Herlt. Exact Solutions of Einstein's Field Equations. Cambridge University Press, 2003.
- Thomas Buchert. Dark energy from structure -a status report. 2007.
- Thomas Buchert, Syksy Räsänen. Backreaction in late-time cosmology. arXiv:1112.5335 (2012).
- Naoshi Sugiyama. Cosmic Background Anisotropies in CDM Cosmology. arXiv:astro-ph/9412025.
- R. Colistete Jr., J.C. Fabris. Bayesian Analysis of the (Generalized) Chaplygin Gas and Cosmological Constant Models using the 157 gold SNe Ia Data. arXiv astro- ph/0501519 (2014).
- A. V. Filippenko, Type Ia Supernovae and cosmology , astro-ph:0410609.
- Y. Wang, D.Wands, L. Xu, J. De-Santiago , A. Hojjati. Cosmological constraints on a decomposed Chaplygin gas. arXiv:1301.5315.
- S. Cole et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications. arXiv:astro-ph/0501174
- Buchdahl, H. A. (1970). Non-linear Lagrangians and cosmological theory. Monthly Notices of the Royal Astronomical Society 150: 1-8.
- C. Brans and R.Dicke. Mach's principle and a relativistic theory of gravitation. Phys. Rev. 124 (1961), 925.
- Mordehai Milgrom. Mond, a pedagogical review. Acta Phys. Polon., B32:3613, 2001.
- Jacob D. Bekenstein. Relativistic gravitation theory for the MOND paradigm. Phys. Rev., D70:083509, 2004.
- Sachs, R. K.; Wolfe, A. M. (1967). Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. Astrophysical Journal 147: 73.
- Yuting Wang, Yuan-Xing Gui, Lixin Xu, Jianbo Lu. The Integrated Sachs-Wolfe Effect in Time Varying Vacuum Model. arXiv:1004.3341
- Luca Amendola, Shinji Tsujikawa. Dark Energy: Theory and Observations (2010)
- Scott Dodelson. Modern Cosmology (2003)
- Moshe Carmeli. Classical Fields: General Relativity and Gauge Theory (2001)
- J.M. Bardeen, J.R. Bond, N.Kaiser, and A. S. Szalay. The statistics of peaks of Gaussian random fields. Astrophys. J. 304 (1986), 15
- S. Weinberg. The cosmological constant problem, Mod. Phys. Rev. 61 (1989) 527.
- T. Padmanabhan. Structure Formation in the Universe
- G.F.R. Ellis. Relativistic cosmology: its nature, aims and problems. General Rela- tivity and Gravitation, pp. 215-288
- L.Amendola, I.Waga, and F.Finelli. Observational constraints on silent quartessence. JCAP 0511 (2005), 009
- D.Pietrobon, A.Balbi, M.Bruni, and C.Quercellini. Affine parameterization of the dark sector: constrains from WMAP 5 and SDSS. Phys. Rev. D 78 (2008), 083510.
- D. Bertacca, S.Matarrese, and M.Pietroni. Unified dark matter in scalar field cos- mologies. Mod. Phys. Lett. A 22 (2007), 2893.
- P.P.Avelino et al. The onset of the nonlinear regime in unified dark matter models. Phys. Rev. D 68 (2004), 041301