Academia.eduAcademia.edu

Outline

Sparse methods for biomedical data

2012, ACM SIGKDD Explorations Newsletter

https://doi.org/10.1145/2408736.2408739

Abstract

Following recent technological revolutions, the investigation of massive biomedical data with growing scale, diversity, and complexity has taken a center stage in modern data analysis. Although complex, the underlying representations of many biomedical data are often sparse. For example, for a certain disease such as leukemia, even though humans have tens of thousands of genes, only a few genes are relevant to the disease; a gene network is sparse since a regulatory pathway involves only a small number of genes; many biomedical signals are sparse or compressible in the sense that they have concise representations when expressed in a proper basis. Therefore, finding sparse representations is fundamentally important for scientific discovery. Sparse methods based on the '1 norm have attracted a great amount of research efforts in the past decade due to its sparsity-inducing property, convenient convexity, and strong theoretical guarantees. They have achieved great success in variou...

References (127)

  1. Afonso M, Bioucas-Dias J, Figueiredo M. An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Transactions on Image Processing. 2011; 20:681-695. [PubMed: 20840899]
  2. Argyriou A, Evgeniou T, Pontil M. Convex multi-task feature learning. Machine Learning. 2008; 73(3):243-272.
  3. Bach FR. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research. 2008; 9:1179-1225.
  4. Bajwa W, Haupt J, Sayeed A, Nowak R. Compressive wireless sensing. International Conference on Information Processing in Sensor Networks. 2006
  5. Banerjee O, El Ghaoui L, d'Aspremont A. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. The Journal of Machine Learning Research. 2008; 9:485-516.
  6. Baraniuk R. Compressive sensing. IEEE Signal Processing Magazine. 2007; 24(4):118-121.
  7. Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation. 2003; 15:1373-1396.
  8. Blaimer M, Breuer F, Muller M, Heidemann R, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA. Top Magn Reson Imaging. 2004; 15:223-236. [PubMed: 15548953]
  9. Bondell H, Reich B. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar. Biometrics. 2008; 64(1):115-123. [PubMed: 17608783]
  10. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning. 2011; 3:1-122.
  11. Bühlmann P. Statistical significance in high-dimensional linear models. Arxiv preprint arXiv: 1202.1377v1. 2012
  12. Busse R, Wang K, Holmes J, Brittain J, Korosec F. Optimization of variable-density cartesian sampling for time-resolved imaging. International Society for Magnetic Resonance in Medicine. 2009
  13. Candès E, Romberg. J. Quantitative robust uncertainty principles and optimally sparse decompositions. Foundations of Computational Mathematics. 2006; 6(2):227-254.
  14. Candès E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory. 2006; 52(2): 489-509.
  15. Candès E, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory. 2006; 52(12):5406-5425.
  16. Candès E, Wakin M. An introduction to compressive sampling. IEEE Signal Processing Magazine. 2008; 25(2):21-30.
  17. Carroll, S.; Grenier, J.; Weatherbee, S. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. 2nd edition.. Blackwell Pub; Malden, MA: 2005.
  18. Chu W, Ghahramani Z, Falciani F, Wild D. Biomarker discovery in microarray gene expression data with gaussian processes. Bioinformatics. 2005; 21(16):3385-3393. [PubMed: 15937031]
  19. Chuang H, Lee E, Liu Y, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Molecular systems biology. 2007; 3:140. [PubMed: 17940530]
  20. Chung F. Spectral Graph Theory. American Mathematical Society. 1997
  21. Cox D. Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological). 1972; 34(2):187-220.
  22. Danaher P, Wang P, Daniela D. The joint graphical lasso for inverse covariance estimation across multiple classes. Arxiv preprint arXiv:1111.0324. :2011.
  23. d'Aspremont A, El Ghaoui L, Jordan M, Lanckriet GRG. A direct formulation for sparse PCA using semidefinite programming. NIPS. 2005
  24. Donoho D. High-dimensional data analysis: The curses and blessings of dimensionality. 2000
  25. Donoho D. Compressed sensing. IEEE Transactions on Information Theory. 2006; 52:1289-1306.
  26. Duarte M, Davenport M, Wakin M, Baraniuk R. Sparse signal detection from incoherent projections. ICASSP. 2006
  27. Fan J, Lv J. A selective overview of variable selection in high dimensional feature space. Statistica Sinica. 2010; 20:101-148. [PubMed: 21572976]
  28. Friedman J, Hastie T, Höfling H, Tibshirani R. Pathwise coordinate optimization. Annals of Applied Statistics. 2007; 1(2):302-332.
  29. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008; 9(3):432-441. [PubMed: 18079126]
  30. Friedman, J.; Hastie, T.; Tibshirani, R. A note on the group lasso and a sparse group lasso. Technical report. Department of Statistics; Stanford University: 2010.
  31. Goldstein T, Osher S. The split bregman method for l1-regularized problems. SIAM Journal on Imaging Sciences. 2009; 2:323-343.
  32. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science. 1999; 286(5439):531-537. [PubMed: 10521349]
  33. Greengard L, Lee J. Accelerating the nonuniform fast fourier transform. SIAM Review. 2004; 46:443-454.
  34. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, K. B. Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine. 2002; 47:1202-1210. [PubMed: 12111967]
  35. Griswold MA, Kannengiesser S, Heidemann RM, Wang J, Jakob PM. Field-of-view limitations in parallel imaging. Magnetic Resonance in Medicine. 2004; 52:1118-1126. [PubMed: 15508164]
  36. Guo J, Levina E, Michailidis G, Zhu J. Joint estimation of multiple graphical models. Biometrika. 2011; 98(1):1-15. [PubMed: 23049124]
  37. Guttman MA, Kellman P, Dick AJ, Lederman RJ, McVeigh ER. Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD. Magnetic Resonance in Medicine. 2003; 50:315-321. [PubMed: 12876708]
  38. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning. 2002; 46(1-3):389-422.
  39. Haacke, EM.; Brown, RW.; Thompson, MR.; Venkatesan, R., editors. Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley-Liss; 1999.
  40. Hansen MS, Baltes C, Tsao J, Kozerke S, Pruessmann KP, Eggers H. k-t BLAST reconstruction from non-cartesian k-t space sampling. Magnetic Resonance in Medicine. 2006; 55:85-91. [PubMed: 16323167]
  41. Hromádka T, DeWeese M, Zador A. Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 2008; 6(1):e16. [PubMed: 18232737]
  42. Huang J, Zhang T, Metaxas D. Learning with structured sparsity. Journal of Machine Learning Research. 2011; 12:3371-3412.
  43. Huang S, Li J, Sun L, Liu J, Wu T, Chen K, Fleisher A, Reiman E, Ye J. Learning brain connectivity of alzheimer's disease from neuroimaging data. NIPS, pages. 2009:808-816.
  44. Jacob L, Obozinski G, Vert J. Group lasso with overlap and graph lasso. ICML. 2009
  45. Jenatton R, Audibert J-Y, Bach F. Structured variable selection with sparsity-inducing norms. Journal of Machine Learning Research. 2011; 12:2777-2824.
  46. Jenatton R, Mairal J, Obozinski G, Bach F. Proximal methods for sparse hierarchical dictionary learning. ICML. 2010
  47. Kellman P. Parallel imaging: the basics. ISMRM Educational Course: MR Physics for Physicists. 2004
  48. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (tsense). Magnetic Resonance in Medicine. 2001; 45:846-852. [PubMed: 11323811]
  49. Khare K, Hardy CJ, King KF, Turski PA, Marinelli L. Accelerated MR imaging using compressive sensing with no free parameters. Magnetic Resonance in Medicine. 2012
  50. Kim S, Xing E. Statistical estimation of correlated genome associations to a quantitative trait network. PLoS genetics. 2009; 5(8):e1000587. [PubMed: 19680538]
  51. Kim S, Xing EP. Tree-guided group lasso for multi-task regression with structured sparsity. ICML. 2010
  52. Koh K, Kim S, Boyd S. An interior-point method for large-scale l1-regularized logistic regression. Journal of Machine Learning Research. 2007; 8:1519-1555.
  53. Kolar M, Song L, Ahmed A, Xing E. Estimating time-varying networks. The Annals of Applied Statistics. 2010; 4(1):94-123.
  54. Kolar M, Xing E. On time varying undirected graphs. AISTAT. 2011
  55. Kowalski M. Sparse regression using mixed norms. Applied and Computational Harmonic Analysis. 2009; 27(3):303-324.
  56. Kumar S, Jayaraman K, Panchanathan S, Gurunathan R, Marti-Subirana A, Newfeld S. BEST: A novel computational approach for comparing gene expression patterns from early stages of Drosophila melanogaster development. Genetics. 2002; 162(4):2037-2047. [PubMed: 12524369]
  57. Lai P, Lustig M, B. A. C. V. S. S. B. P. J. A. M. Efficient L1SPIRiT reconstruction (ESPIRiT) for highly accelerated 3d volumetric MRI with parallel imaging and compressed sensing. ISMRM. 2010
  58. Lai P, Lustig M, V. S. S. B. A. C. ESPIRiT (efficient eigenvector-based l1spirit) for compressed sensing parallel imaging -theoretical interpretation and improved robustness for overlapped FOV prescription. ISMRM. 2011
  59. Larkman DJ, Nunes RG. Parallel magnetic resonance imaging. Physics in Medicine and Biology. 2007; 52:R15-55. [PubMed: 17374908]
  60. Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics. 2008; 24(9):1175-1182. [PubMed: 18310618]
  61. Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magnetic Resonance in Medicine. 2009; 62:1574-1584. [PubMed: 19785017]
  62. Liu H, Palatucci M, Zhang J. Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. ICML. 2009
  63. Liu H, Roeder K, Wasserman L. Stability approach to regularization selection (StARS) for high dimensional graphical models. NIPS. 2011
  64. Liu J, Ji S, Ye J. Multi-task feature learning via efficient ℓ 2, 1 -norm minimization. UAI. 2009
  65. Liu J, Ji S, Ye J. SLEP: Sparse Learning with Efficient Projections. Arizona State University. 2009
  66. Liu J, Rapin J, Chang T, Lefebvre A, Zenge M, Mueller E, Nadar MS. Dynamic cardiac MRI reconstruction with weighted redundant haar wavelets. ISMRM. 2012
  67. Liu J, Rapin J, Chang T, Schmitt P, Bi X, Lefebvre A, Zenge M, Mueller E, Nadar MS. Regularized reconstruction using redundant haar wavelets: A means to achieve high under- sampling factors in non-contrast-enhanced 4D MRA. ISMRM. 2012
  68. Liu J, Ye J. Efficient ℓ 1 / ℓ q norm regularization. Arxiv preprint arXiv:1009.4766v1. 2010
  69. Liu J, Ye J. Moreau-Yosida regularization for grouped tree structure learning. NIPS. 2010
  70. Loh P, Wainwright M. High-dimension regression with noisy and missing data: Provable guarantees with non-convexity. NIPS. 2011
  71. Lustig M, Donoho DL, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine. 2007; 58:1182-1195. [PubMed: 17969013]
  72. Lustig M, Lai P, Murphy M, Vasanawala S, Elad M, Zhang J, Pauly J. An eigen-vector approach to autocalibrating parallel MRI, where SENSE meets GRAPPA. ISMRM. 2011
  73. Lustig M, Pauly JM. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magnetic Resonance in Medicine. 2010; 64:457-471. [PubMed: 20665790]
  74. Marton M, et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Medicine. 1998; 4(11):1293-1301.
  75. Mazumder R, Hastie T. Exact covariance thresholding into connected components for large-scale graphical lasso. Arxiv preprint arXiv:1108.3829. :2011.
  76. Mazumder R, Hastie T. The graphical lasso: New insights and alternatives. Arxiv preprint arXiv: 1111.5479. :2011.
  77. Megason S, Fraser S. Imaging in systems biology. Cell. 2007; 130(5):784-795. [PubMed: 17803903]
  78. Meier L, Geer S, Bühlmann P. The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B. 2008; 70:53-71.
  79. Meinshausen N, Bühlmann P. Stability selection. Journal of the Royal Statistical Society: Series B. 2010; 72:417-473.
  80. Negahban S, Wainwright M. Joint support recovery under high-dimensional scaling: Benefits and perils of ℓ 1 , ∞-regularization. NIPS. 2008:1161-1168.
  81. Nemirovski, A. Efficient methods in convex programming. Lecture Notes; 1994.
  82. Nesterov, Y. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers; 2004.
  83. Nesterov, Y. Gradient methods for minimizing composite objective function. CORE; 2007.
  84. Ng A. Feature selection, ℓ 1 vs. ℓ 2 regularization, and rotational invariance. ICML. 2004
  85. Obozinski, G.; Taskar, B.; Jordan, MI. Joint covariate selection for grouped classification. Technical report. Statistics Department; UC Berkeley: 2007.
  86. Peng H. Bioimage informatics: a new area of engineering biology. Bioinformatics. 2008; 24(17): 1827-1836. [PubMed: 18603566]
  87. Peng J, Zhu J, B. A. Han W, Noh D-Y, Pol-lack JR, Wang P. Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. Annals of Applied Statistics. 2010; 4(1):53-77.
  88. Pruessmann K, Weiger M, Scheidegger M, Boesiger P. SENSE: sensitivity endcoding for fast MRI. Magnetic Resonance in Medicine. 1999; 42:952-962. [PubMed: 10542355]
  89. Quattoni A, Carreras X, Collins M, Darrell T. An efficient projection for ℓ 1 , ∞ regularization. ICML. 2009
  90. Ramani S, Fessler JA. Parallel MR image reconstruction using augmented lagrangian methods. IEEE Transactions on Medical Imaging. 2011; 30:694-706. [PubMed: 21095861]
  91. Ryali S, Supekar K, Abrams D, Menon V. Sparse logistic regression for whole-brain classification of fMRI data. Neuroimage. 2010; 51(2):752-764. [PubMed: 20188193]
  92. Shen X, Pan W, Zhu Y. Likelihood-based selection and sharp parameter estimation. Journal of American Statistical Association. 2012; 107:223-232.
  93. Shi, J.; Yin, W.; Osher, S.; Sajda, P. A fast algorithm for large scale ℓ 1 -regularized logistic regression. Technical report, CAAM TR08-07. 2008.
  94. Shi W, Lee K, Wahba G. Detecting disease-causing genes by lasso-patternsearch algorithm. BMC Proceedings. 2007; 1(Suppl 1):S60. [PubMed: 18466561]
  95. Sodickson D, Manning W. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magnetic Resonance in Medicine. 1997; 38:591-603. [PubMed: 9324327]
  96. Stäadler N, Bühlmann P. Missing values: sparse inverse covariance estimation and an extension to sparse regression. Statistics and Computing. 2012; 22:219-235.
  97. Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(43):15545-15550. [PubMed: 16199517]
  98. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B. 1996; 58(1):267-288.
  99. Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K. Sparsity and smoothness via the fused lasso. Journal Of The Royal Statistical Society Series B. 2005; 67(1):91-108.
  100. Tibshirani R, Wang P. Spatial smoothing and hot spot detection for cgh data using the fused lasso. Biostatistics. 2008; 9(1):18-29. [PubMed: 17513312]
  101. Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker SE, Rubin GM. Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biology. 2002; 3(12):1-14. research0088.
  102. Tropp A, Gilbert A, Strauss M. Algorithms for simultaneous sparse approximation: part I: Greedy pursuit. Signal Processing. 2006; 86(3):572-588.
  103. Uecker M, Hohage T, Block KT, Frahm J. Image reconstruction by regularized nonlinear inversion-joint estimation of coil sensitivities and image content. Magnetic Resonance in Medicine. 2008; 60:674-682. [PubMed: 18683237]
  104. Usman M, Prieto C, Schaeffter T, Batchelor PG. k-t group sparse: A method for accelerating dynamic MRI. Magnetic Resonance in Medicine. 2011; 66:1163-1176. [PubMed: 21394781]
  105. Vlaardingerbroek, MT.; Boer, JA., editors. Magnetic Resonance Imaging. Spinger; 2004.
  106. Witten D, Friedman J, Simon N. New insights and faster computations for the graphical lasso. Journal of Computational and Graphical Statistics. 2011; 20(4):892-900.
  107. Wu T, Chen Y, Hastie T, Sobel E, Lange K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics. 2009; 25(6):714-721. [PubMed: 19176549]
  108. Xiang S, Shen X, Ye J. Efficient sparse group feature selection via nonconvex optimization. Arxiv preprint arXiv:1205.5075. 2012
  109. Yang, S.; Pan, Z.; Shen, X.; Wonka, P.; Ye, J. Fused multiple graphical lasso. Technical Report. Arizona State University; 2012.
  110. Yang S, Yuan L, Lai Y-C, Shen X, Wonka P, Ye J. Feature grouping and selection over an undirected graph. KDD. 2012
  111. Ye J, Farnum M, Yang E, Verbeeck R, Lobanov V, Raghavan N, Novak G, DiBernardo A, Narayan V. Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC Neurology. 2012; 12:46. [PubMed: 22731740]
  112. Ye X, Chen Y, Huang F. Computational acceleration for MR image reconstruction in partially parallel imaging. IEEE Transactions on Medical Imaging. 2011; 30:1055-1063. [PubMed: 20833599]
  113. Ying L, Sheng J. Joint image reconstruction and sensitivity estimation in sense (JSENSE). Magnetic Resonance in Medicine. 2007; 57:1196-1202. [PubMed: 17534910]
  114. Yuan L, Wang Y, Thompson P, Narayand V, Ye J. Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage. 2012; 61(3):622-632. [PubMed: 22498655]
  115. Yuan L, Woodard A, Ji S, Jiang Y, Zhou Z-H, Kumar S, Ye J. Learning sparse representations for fruit-fly gene expression pattern image annotation and retrieval. BMC Bioinformatics. 2012; 13:107. [PubMed: 22621237]
  116. Yuan M, Joseph VR, Zou H. Structured variable selection and estimation. Annals of Applied Statistics. 2009; 3:1738-1757.
  117. Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal Of The Royal Statistical Society Series B. 2006; 68(1):49-67.
  118. Zhang C-H, Zhang S. Confidence intervals for low-dimensional parameters with high- dimensional data. Arxiv preprint arXiv:1110.2563v1. 2011
  119. Zhang T. Analysis of multi-stage convex relaxation for sparse regularization. Journal of Machine Learning Research. 2010; 11:1081-1107.
  120. Zhao P, Rocha G, Yu B. The composite absolute penalties family for grouped and hierarchical variable selection. Annals of Statistics. 2009; 37(6A):3468-3497.
  121. Zhong L, Kwok J. Efficient sparse modeling with automatic feature grouping. ICML. 2011
  122. Zhou S, Lafferty J, Wasserman L. Time varying undirected graphs. COLT. 2008
  123. Zhu J, Hastie T. Classification of gene microar-rays by penalized logistic regression. Biostatistics. 2004; 5(3):427-443. [PubMed: 15208204]
  124. Zhu J, Rosset S, Hastie T, Tibshirani R. 1-norm support vector machines. Neural Information Processing Systems. 2003:49-56.
  125. Zhu Y, Shen X, Pan W. Simultaneous grouping pursuit and feature selection in regression over an undirected graph. Preprint. 2012
  126. Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of The Royal Statistical Society Series B. 2005; 67(2):301-320.
  127. Zou H, Hastie T, Tibshirani R. Sparse principle component analysis. Journal of Computational and Graphical Statistics. 2006; 15(2):262-286.