Academia.eduAcademia.edu

Outline

Graph

2014

Abstract

risk in a large claims insurance market with bipartite

Key takeaways
sparkles

AI

  1. The paper assesses systemic risk in insurance markets using a bipartite graph structure.
  2. Heavy-tailed claims are modeled with Pareto distributions, impacting risk measures like Value-at-Risk.
  3. Uninsured losses depend on network connectivity and agent diversification preferences.
  4. The model reveals a conflict between individual agent interests and societal insurance needs when claims have infinite mean.
  5. Regular variation techniques are applied to understand extremal dependence between losses and their distribution across agents.

References (46)

  1. T. Adrian and M.K. Brunnermeier. CoVaR. Working Paper 17454, National Bureau of Economic Research, October 2011.
  2. H. Amini and A. Minca. Inhomogeneous Financial Networks and Con- tagious Links. Available at SSRN: http://ssrn.com/abstract=2518840 or http://dx.doi.org/10.2139/ssrn.2518840, 2014.
  3. B. Bollobás, C. Borgs, J. Chayes, and O. Riordan. Directed scale-free graphs. In Proceed- ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, 2003), pages 132-139. ACM, New York, 2003.
  4. A.D. Bain. Insurance Spirals and the London Market. The Geneva Papers on Risk and Insurance -Issues and Practice, 24(2):228-242, 1999.
  5. A.D. Barbour, L. Holst, and S. Janson. Poisson Approximation. Oxford University Press, Oxford, 1992.
  6. B. Basrak. The Sample Autocorrelation Function of Non-Linear Time Series. PhD thesis, Rijksuniversteit Groningen, NL, 2000.
  7. B. Basrak, R.A. Davis, and T. Mikosch. Regular variation of GARCH processes. Stochastic Processes and their Applications, 99(1):95-115, 2002.
  8. R. Biard. Asymptotic multivariate finite-time ruin probabilities with heavy-tailed claim amounts: impact of dependence and optimal reserve allocation. Bulletin Francais d'Actuariat, 13(26), 2013.
  9. N.H. Bingham, C.M. Goldie, and J.L. Teugels. Regular Variation. Cambridge University Press Cambridge ; New York, 1987.
  10. J. Blanchet and Y. Shi. Stochastic Risk Networks: Modeling, Analysis and Efficient Monte Carlo. 2012.
  11. M. Boss, H. Elsinger, M. Summer, and S.Thurner. The network topology of the interbank market. Quantitative Finance, 4(6):677-684, 2004.
  12. A. Braverman and A. Minca. Networks of Common Asset Holdings: Aggregation and Measures of Vulnerability. Available at SSRN 2379669, 2014.
  13. Y. Bregman and C. Klüppelberg. Ruin estimation in multivariate models with Clayton dependence structure. Scand. Act. J., 2005(6):462-480, 2005.
  14. L. Breiman. On some limit theorems similar to the arc-sine law. Theory Probab. Appl., 10:323-331, 1965.
  15. C. T. Brownlees and R. Engle. Volatility, correlation and tails for systemic risk measure- ment., 2010. Working Paper Series, Department of Finance, NYU.
  16. M. K. Brunnermeier and P. Cheridito. Measuring and Allocating Systemic Risk. Available at SSRN: http://ssrn.com/abstract=2372472 or http://dx.doi.org/10.2139/ssrn.2372472, 2014.
  17. F. Caccioli, M. Shrestha, C. Moore, and J.D. Farmer. Stability analysis of financial conta- gion due to overlapping portfolios. SFI Working Paper: 2012-10-018, 2012.
  18. C. Chen, G. Iyengar, and C.C. Moallemi. An Axiomatic Approach to Systemic Risk. Management Science, 59(6):1373-1388, 2013.
  19. Munich Reinsurance Company. Annual report 2014. http://www.munichre.com/ site/corporate/get/documents_E-1770937763/mr/assetpool.shared/Documents/ 0_Corporate%20Website/_Financial%20Reports/2015/Annual%20Report%202014/ 302-08574_en.pdf.
  20. R. Cont, A. Moussa, and E.B. Santos. Network structure and systemic risk in banking systems. In J-P. Fouque and J.A. Langsam, editors, Handbook on Systemic Risk. Cambridge University Press, Cambridge, 2013.
  21. E.W. Cope, G. Mignola, G. Antonini, and R. Ugoccioni. Challenges and pitfalls in mea- suring operational risk from loss data. Journal of Operational Risk, 4(4):3-27, 2009.
  22. C.G. de Vries, G. Samorodnitsky, B.N. Jorgensen, S. Mandira, and J. Danielsson. Subad- ditivity re-examined: the case for Value-at-Risk. FMG Discussion Papers dp549, Financial Markets Group, November 2005.
  23. I. Eder and C. Klüppelberg. The first passage event for sums of dependent Lévy processes with applications to insurance risk. Ann. Appl. Probab., 19(6):2047-2079, 2009.
  24. I. Eder and C. Klüppelberg. Pareto Lévy measures and multivariate regular variation. Advances in Applied Probability, 44(1):117-138, 2012.
  25. L. Eisenberg and T. Noe. Systemic risks in financial systems. Management Science, 47:2236- 249, 2001.
  26. P. Embrechts, D.D. Lambrigger, and M.V. Wüthrich. Multivariate extremes and the ag- gregation of dependent risks: examples and counter-examples. Extremes, 12:107-127, 2009.
  27. P. Embrechts, J. Nešlehová, and M.V. Wüthrich. Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness. Insurance: Mathematics and Eco- nomics, 44(2):164-169, 2009.
  28. P. Gai and S. Kapadia. Contagion in financial networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466(2120):2401-2423, 2010.
  29. A.G. Haldane and R.M. May. Systemic risk in banking ecosystems. Nature, 469(7330):351- 355, 2011.
  30. H. Hoffmann, T. Meyer-Brandis, and G. Svindland. Risk-Consistent Conditional Systemic Risk Measures. 2014. preprint.
  31. H. Hult and F. Lindskog. Heavy-tailed insurance portfolios: buffer capital and ruin proba- bilities. Technical Report No. 1441, 2006.
  32. International Association of Insurance Supervisors (IAIS). Insurance and Financial Stabil- ity, 2011.
  33. R. Ibragimov. Portfolio diversification and value at risk under thick-tailedness. Quantitative Finance, 9(5):565-580, 2009.
  34. O. Kley and C. Klüppelberg. Bounds for randomly shared risk of heavy-tailed loss factors. arxiv:1503.03726[q-fin.RM], 2015.
  35. O. Kley, C. Klüppelberg, and G. Reinert. Conditional risk measures in a large claims market with bipartite graph structure. Preprint Technische Universität München, submitted, 2015.
  36. E Kromer, L. Overbeck, and K.A. Zilch. Systemic Risk Measures on General Probability Spaces. 2014.
  37. Y. Lin, J. Yu, and M.O. Peterson. Reinsurance Networks and Their Impact on Reinsurance Decisions: Theory and Empirical Evidence. Journal of Risk and Insurance, 2014.
  38. G. Mainik and L. Rüschendorf. On optimal portfolio diversification with respect to extreme risks. Finance and Stochastics, 14(4):593-623, 2010.
  39. G. Rasch. On general laws and the meaning of measurement in psychology. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, IV, pages 321-333. Berkeley, 1961.
  40. S.I. Resnick. Extreme Values, Regular Variation, and Point Processes. Springer, New York, 1987.
  41. S.I. Resnick. Heavy-Tail Phenomena. Springer, New York, 2007.
  42. H. Rootzén and C. Klüppelberg. A single number can't hedge against economic catastro- phes. AMBIO: A Journal of the Human Environment, 28(6), 1999.
  43. G. Samorodnitsky, S. Resnick, D. Towsley, R. Davis, A. Willis, and P. Wan. Nonstan- dard regular variation of in-degree and out-degree in the preferential attachment model. arXiv:1405.4882v1 [math.PR], 2014.
  44. S. von Dahlen and G. von Peter. Natural catastrohpes and global reinsurance -exploring the linkages. BIS Quarterly Review, 2012.
  45. C. Zhou. Dependence structure of risk factors and diversification effects. Insurance: Math- ematics and Economics, 46(3):531-540, 2010.
  46. J.-P. Zigrand. Systems and Systemic Risk in Finance and Economics, 2014. SRC Special Paper No 1.