Academia.eduAcademia.edu

Outline

Coherent algebras and noncommutative projective lines

2008, Journal of Algebra

Abstract

A well-known conjecture says that every one-relator group is coherent. We state and partly prove a similar statement for graded associative algebras. In particular, we show that every Gorenstein algebra A of global dimension 2 is graded coherent. This allows us to define a noncommutative analogue of the projective line P 1 as a noncommutative scheme based on the coherent noncommutative spectrum qgr A of such an algebra A, that is, the category of coherent A-modules modulo the torsion ones. This category is always abelian Ext-finite hereditary with Serre duality, like the category of coherent sheaves on P 1. In this way, we obtain a sequence P 1 n (n ≥ 2) of pairwise non-isomorphic noncommutative schemes which generalize the scheme P 1 = P 1 2. Theorem 1.2 (Theorem 4.1). Every graded algebra defined by a single homogeneous quadratic relation is graded coherent. Note that there are non-coherent quadratic algebras with two relations, for example, the algebras k x, y, z, t|tz − zy, zx [Pi2, Prop. 10] or even k x, y, z|yz − zy, zx [Po, Example 2].

References (23)

  1. D. Anick, Non-commutative graded algebras and their Hilbert series, J. Algebra, 78 (1982), p. 120-140
  2. M. Artin and W.F. Schelter, Graded algebras of global dimension 3, Adv. Math., 66 (1987), p. 171-216
  3. M. Artin, J. J. Zhang, Noncommutative projective schemes, Adv. Math., 109 (1994), 2, p. 228-287
  4. G. Baumslag, Some Problems in One-Relator Groups, in: Proc. Conf. Canberra 1973, Lecture notes in Math., 372 (1973), p. 75-81
  5. A. Bondal, M. Van den Bergh, Generators and representability of functors in commuta- tive and noncommutative geometry, Mosc. Math. J., 3 (2003), 1, p. 1-36, 258
  6. S. Chase, Direct products of modules, Trans. Amer. Math. Soc, 97 (1960), p. 457-473 [EG] P. Etingof, V. Ginzburg, Noncommutative complete intersections and matrix integrals, preprint arXiv:math.AG/0603272 (2006)
  7. K. Faith, Algebra: rings, modules, and categories. V. I, Corrected reprint. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 190. Springer-Verlag, Berlin-New York, 1981
  8. E. S. Golod, Homology of the Shafarevich complex and noncommutative complete inter- sections (Russian), Fundam. Prikl. Mat., 5 (1999), 1, p. 85-95
  9. M. Kontsevich, A. Rosenberg, Noncommutative smooth spaces, Gelfand Math. Sem., Birkhauser, Boston, MA, 2000
  10. Hiroyuki Minamoto, Auslander-Reiten Theory and noncommutative projective schemes, preprint arXiv:math.AG/0702861, 2007
  11. R. Martínez Villa, Serre duality for generalized Auslander regular algebras, Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997), Contemp. Math., 229, Amer. Math. Soc., Providence, RI, 1998, p. 237263
  12. R. Martinez Villa, M. Saorín, Koszul equivalences and dualities, Pacific J. Math., 214 (2004), 2, p. 359-378
  13. D. I. Piontkovski, Noncommutative Groebner bases and coherence of the monomial asso- ciative algebra, Fundam. Prikl. Mat., 2 (1996), 2, p. 501-509 [Russian]
  14. D. Piontkovski, Noncommutative Groebner bases, coherence of associative algebras, and divisibility in semigroups, Fundam. Prikl. Mat., 7 (2001), 2, p. 495-513 [Russian];
  15. D. Piontkovski, Extensions of differential graded algebras, Journal of Mathematical Sci- ences, 142 (2007), 4, p. 2267-2301
  16. A. Polishchuk, Noncommutative proj and coherent algebras, Math. Res. Lett., 12 (2005), 1, p. 63-74
  17. I. Reiten, M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc., 15 (2002), 2, p. 295-366
  18. J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math. (2), 61 (1955), p. 197-278
  19. V. A. Ufnarovsky, Combinatorial and asymptotical methods in algebra, Sovr. probl. mat., Fund. napr., 57 (1990), p. 5-177 [Russian] Engl. transl.: Algebra VI, Encycl. Math. Sci., Springer, Berlin 1995, p. 1-196
  20. A. B. Verevkin, On a noncommutative analogue of the category of coherent sheaves on a projective scheme, Algebra and analysis (Tomsk, 1989), Amer. Math. Soc. Transl., ser. 2, bf 151, p. 41-53, AMS, Providence, RI, 1992
  21. M. Van den Bergh, private communication, June, 2006
  22. J. J. Zhang, Twisted graded algebras and equivalences of graded categories, Proc. London Math. Soc. (3), 72 (1996), 2, p. 281-311
  23. J. J. Zhang, Non-Noetherian regular rings of dimension 2, Proc. AMS, 126 (1998), 6, p. 1645-1653