Coherent algebras and noncommutative projective lines
2008, Journal of Algebra
Abstract
A well-known conjecture says that every one-relator group is coherent. We state and partly prove a similar statement for graded associative algebras. In particular, we show that every Gorenstein algebra A of global dimension 2 is graded coherent. This allows us to define a noncommutative analogue of the projective line P 1 as a noncommutative scheme based on the coherent noncommutative spectrum qgr A of such an algebra A, that is, the category of coherent A-modules modulo the torsion ones. This category is always abelian Ext-finite hereditary with Serre duality, like the category of coherent sheaves on P 1. In this way, we obtain a sequence P 1 n (n ≥ 2) of pairwise non-isomorphic noncommutative schemes which generalize the scheme P 1 = P 1 2. Theorem 1.2 (Theorem 4.1). Every graded algebra defined by a single homogeneous quadratic relation is graded coherent. Note that there are non-coherent quadratic algebras with two relations, for example, the algebras k x, y, z, t|tz − zy, zx [Pi2, Prop. 10] or even k x, y, z|yz − zy, zx [Po, Example 2].
References (23)
- D. Anick, Non-commutative graded algebras and their Hilbert series, J. Algebra, 78 (1982), p. 120-140
- M. Artin and W.F. Schelter, Graded algebras of global dimension 3, Adv. Math., 66 (1987), p. 171-216
- M. Artin, J. J. Zhang, Noncommutative projective schemes, Adv. Math., 109 (1994), 2, p. 228-287
- G. Baumslag, Some Problems in One-Relator Groups, in: Proc. Conf. Canberra 1973, Lecture notes in Math., 372 (1973), p. 75-81
- A. Bondal, M. Van den Bergh, Generators and representability of functors in commuta- tive and noncommutative geometry, Mosc. Math. J., 3 (2003), 1, p. 1-36, 258
- S. Chase, Direct products of modules, Trans. Amer. Math. Soc, 97 (1960), p. 457-473 [EG] P. Etingof, V. Ginzburg, Noncommutative complete intersections and matrix integrals, preprint arXiv:math.AG/0603272 (2006)
- K. Faith, Algebra: rings, modules, and categories. V. I, Corrected reprint. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 190. Springer-Verlag, Berlin-New York, 1981
- E. S. Golod, Homology of the Shafarevich complex and noncommutative complete inter- sections (Russian), Fundam. Prikl. Mat., 5 (1999), 1, p. 85-95
- M. Kontsevich, A. Rosenberg, Noncommutative smooth spaces, Gelfand Math. Sem., Birkhauser, Boston, MA, 2000
- Hiroyuki Minamoto, Auslander-Reiten Theory and noncommutative projective schemes, preprint arXiv:math.AG/0702861, 2007
- R. Martínez Villa, Serre duality for generalized Auslander regular algebras, Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997), Contemp. Math., 229, Amer. Math. Soc., Providence, RI, 1998, p. 237263
- R. Martinez Villa, M. Saorín, Koszul equivalences and dualities, Pacific J. Math., 214 (2004), 2, p. 359-378
- D. I. Piontkovski, Noncommutative Groebner bases and coherence of the monomial asso- ciative algebra, Fundam. Prikl. Mat., 2 (1996), 2, p. 501-509 [Russian]
- D. Piontkovski, Noncommutative Groebner bases, coherence of associative algebras, and divisibility in semigroups, Fundam. Prikl. Mat., 7 (2001), 2, p. 495-513 [Russian];
- D. Piontkovski, Extensions of differential graded algebras, Journal of Mathematical Sci- ences, 142 (2007), 4, p. 2267-2301
- A. Polishchuk, Noncommutative proj and coherent algebras, Math. Res. Lett., 12 (2005), 1, p. 63-74
- I. Reiten, M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc., 15 (2002), 2, p. 295-366
- J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math. (2), 61 (1955), p. 197-278
- V. A. Ufnarovsky, Combinatorial and asymptotical methods in algebra, Sovr. probl. mat., Fund. napr., 57 (1990), p. 5-177 [Russian] Engl. transl.: Algebra VI, Encycl. Math. Sci., Springer, Berlin 1995, p. 1-196
- A. B. Verevkin, On a noncommutative analogue of the category of coherent sheaves on a projective scheme, Algebra and analysis (Tomsk, 1989), Amer. Math. Soc. Transl., ser. 2, bf 151, p. 41-53, AMS, Providence, RI, 1992
- M. Van den Bergh, private communication, June, 2006
- J. J. Zhang, Twisted graded algebras and equivalences of graded categories, Proc. London Math. Soc. (3), 72 (1996), 2, p. 281-311
- J. J. Zhang, Non-Noetherian regular rings of dimension 2, Proc. AMS, 126 (1998), 6, p. 1645-1653