Academia.eduAcademia.edu

Outline

A noncommutative generalization of Auslander's last theorem

2005, International Journal of Mathematics and Mathematical Sciences

https://doi.org/10.1155/IJMMS.2005.1473

Abstract

We show that every finitely generated left R-module in the Auslander class over an nperfect ring R having a dualizing module and admitting a Matlis dualizing module has a Gorenstein projective cover.

References (14)

  1. M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d'Algèbre Commutative dirigé par Pierre Samuel, 1966/1967. Texte rédigé, d'après des exposés de Maurice Auslander, Marquerite Mangeney, Christian Peskine et Lucien Szpiro. École Nor- male Supérieure de Jeunes Filles, Secrétariat mathématique, Paris, 1967 (French).
  2. L. W. Christensen, Gorenstein Dimensions, Lecture Notes in Mathematics, vol. 1747, Springer, Berlin, 2000. 1480 A generalization of Auslander's last theorem
  3. Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839-1883.
  4. E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633.
  5. Relative Homological Algebra, De Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter, Berlin, 2000.
  6. E. E. Enochs, O. M. G. Jenda, and J. A. L ópez-Ramos, Dualizing modules and n-perfect rings, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 1, 75-90.
  7. E. E. Enochs, O. M. G. Jenda, and J. Z. Xu, Foxby duality and Gorenstein injective and projective modules, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3223-3234.
  8. Lifting group representations to maximal Cohen-Macaulay representations, J. Algebra 188 (1997), no. 1, 58-68.
  9. A generalization of Auslander's last theorem, Algebr. Represent. Theory 2 (1999), no. 3, 259-268.
  10. E. E. Enochs, J. A. L ópez-Ramos, and B. Torrecillas, On Matlis dualizing modules, Int. J. Math. Math. Sci. 30 (2002), no. 11, 659-665.
  11. H.-B. Foxby, Gorenstein dimensions over Cohen-Macaulay rings, Proc. International Conference on Commutative Algebras (W. Bruns, ed.), Universitat Osnabrück, Osnabrück, 1994, pp. 59-63.
  12. R. Hartshorne, Local Cohomology, Lecture Notes in Mathematics, no. 41, Springer, Berlin, 1967, a seminar given by A. Grothendieck, Harvard University, 1961.
  13. P. Jørgensen, The Gorenstein projective modules are precovering, preprint.
  14. Edgar E. Enochs: Department of Mathematics, College of Arts and Sciences, University of Ken- tucky, Lexington, KY 40506-0027, USA E-mail address: enochs@ms.uky.edu