Academia.eduAcademia.edu

Outline

Regarding the Entropy of Distinguishable Particles

2004, Journal of Statistical Physics

https://doi.org/10.1007/S10955-004-5715-5

Abstract

The traditional Gibbs" calculation of the entropy of distinguishable classical particles that leads to Gibbs Paradox has been criticized recently. This criticism, if valid, would require a substantially different definition of entropy in general. However, the traditional definition of entropy works quite well in situations where the distinguishability of classical particles is taken seriously while a suggested replacement definition fails.

References (31)

  1. Swendsen, R.H. Statistical Mechanics of Classical Systems with Distinguishable Particles. J. Stat. Phys. 2002, 107, 1143-1166.
  2. Swendsen, R.H. Statistical Mechanics of Colloids and Boltzmann"s Definition of the Entropy. Am. J. Phys. 2006, 74, 187-190.
  3. Mayer, J.E.; Mayer, M.G. Statistical Mechanics; Wiley & Sons: New York, NY, USA, 1940; p. 92.
  4. Chandler, D. Introduction to Modern Statistical Mechanics; Oxford University Press: Oxford, UK, 1987; p. 61.
  5. Callen, H.B. Thermodynamics and an Introduction to Thermostatistics; Wiley: New York, NY, USA, 1985; p.331.
  6. Rushbrooke, G.S. Introduction to Statistical Mechanics; Clarendon Press: Oxford, UK, 1949;
  7. Hill, T.L. Statistical Mechanics; McGraw-Hill: New York, NY, USA, 1956; p. 75.
  8. Reif, F. Fundamentals of Statistical and Thermal Physics; McGraw-Hill: New York, NY, USA, 1965; p. 99.
  9. Pathria, R.K. Statistical Mechanics, 2nd ed.; Pergamon Press: Oxford, UK, 2001; p. 14.
  10. Bloch, F. Fundamentals of Statistical Mechanics: Manuscript and Notes of Felix Bloch; Stanford University Press: Stanford, CA, USA, 1989; p. 68.
  11. Kadanoff, L.P. Statistical Physics: Statics, Dynamics and Renormalization; World Scientific: Singapore, 2000; p. 16
  12. Tolman, R.C. The Principles of Statistical Mechanics; Oxford University Press: London, UK, 1938; p. 562.
  13. Kubo, R. Statistical Mechanics; North Holland Press: Amsterdam, The Netherland, 1965; p. 8.
  14. er Haar, D. Elements of Statistical Mechanics; Rinehart: NewYork, NY, USA, 1958; p. 401.
  15. Widom, B. Statistical Mechanics: A Concise Introduction for Chemists; Cambridge University Press: Cambridge, UK, 2002; pp. 13-15.
  16. Balian, R. From Microphysics to Macrophysics; Springer-Verlag: Berlin, Germany, 1991; Volume I, p. 114.
  17. Fowler, R.H. Statistical Mechanics. In The Theory of the Properties of Matter in Equilibrium, 2nd ed.; Cambridge University Press: Cambridge, UK, 1936; p. 189, pp.200-207.
  18. Wannier, G.H. Statistical Physics; Wiley & Sons: New York, NY, USA, 1966, p.86.
  19. Kittel, C. Elementary Statistical Physics; Wiley: New York, NY, USA, 1958; p. 16.
  20. Ma, S.-K. Statistical Mechanics; World Scientific: Singapore, 1985; p.68.
  21. Huang, K. Statistical Mechanics; Wiley: New York, NY, USA, 1963; p. 143.
  22. Planck, M. The Theory of Heat Radiation; Masius, M., Trans.; Dover: New York, NY, USA, 1959; p. 118.
  23. Feynman, R.P. Statistical Mechanics. In A Set of Lectures; Benjamin Press: Reading, MA, USA, 1972; p. 6.
  24. Gibbs, J.W. Collected Works-Elementary Principles in Statistical Mechanics; Yale University Press: New Haven, CT, USA, 1948; Volume 2, p. 32, p.44, p.129.
  25. Nagle, J.F. Regarding the Entropy of Distinguishable Particles. J. Stat. Phys. 2004, 117, 1047-1062.
  26. Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620-630.
  27. Balian, R. Information in Statistical Physics. Stud. Hist. Phil. Mod. Phys. 2005, 36, 323-353.
  28. Ben-Naim, A. Entropy Demystified; World Scientific: Singapore, 2008.
  29. Ben-Naim, A. Is Mixing a Thermodynamic Process? Am. J. Phys. 1987, 55, 725-733.
  30. Denbigh, K.G.; Denbigh, J.S. Entropy in Relation to Incomplete Knowledge; Cambridge University Press: Cambridge, UK, 1985.
  31. Leff, J.S.; Rex, A.F. Resource Letter MD-1: Maxwell"s Demon. Am. J. Phys. 1990, 58, 201-209.