Academia.eduAcademia.edu

Outline

Gibbs’ paradox according to Gibbs and slightly beyond

Molecular Physics

https://doi.org/10.1080/00268976.2018.1463467

Abstract

The so-called Gibbs paradox is a paradigmatic narrative illustrating the necessity to account for the N! ways of permuting N identical particles when summing over microstates. Yet, there exist some mixing scenarios for which the expected thermodynamic outcome depends on the viewpoint one chooses to justify this combinatorial term. After a brief summary on the Gibbs' paradox and what is the standard rationale used to justify its resolution, we will allow ourself to question from a historical standpoint whether the Gibbs paradox has actually anything to do with Gibbs' work. In so doing, we also aim at shedding a new light with regards to some of the theoretical claims surrounding its resolution. We will then turn to the statistical thermodynamics of discrete and continuous mixtures and introduce the notion of composition entropy to characterise these systems. This will enable us to address, in a certain sense, a "curiosity" pointed out by Gibbs in a paper published in 1876. Finally, we will finish by proposing a connexion between the results we propose and a recent extension of the Landauer bound regarding the minimum amount of heat to be dissipated to reset one bit of memory.

References (55)

  1. D. C. Mattis, A Guide for Students and Researchers: Sta- tistical Mechanics Made Simple, 1st ed. (World Scientific, 2003).
  2. W. Greiner, L. Neise, and H. Stocker, Thermodynamics and statistical mechanics, 1st ed. (Springer, 1995).
  3. M. D. and D. Allan, Statistical Mechanics, 1st ed. (Uni- versity Science Books, 2000).
  4. M. E. Tuckerman, Statistical mechanics: theory and molecular simulation, 1st ed. (Oxford university press, 2010).
  5. C. Kittel, Elementary statistical physics, 5th ed. (Dover publications, 2004).
  6. D. Chandler, Introduction to Modern Statistical Mechan- ics, 1st ed. (Oxford University Press, 1987).
  7. M. Glazer and J. Wark, Statistical mechanics a survival guide, 1st ed. (Oxford University Press, 2001).
  8. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, 1st ed. (John Wiley & Sons, 1975).
  9. J. Honerkamp, Statistical Physics, 2nd ed. (Springer, 2002).
  10. K. Huang, Statistical Mechanics, 2nd ed. (John Wiley & Sons, 1987).
  11. G. Morandi, F. Napoli, and E. Ercolessi, Statistical Me- chanics an intermediate course, 2nd ed. (World Scientific, 2001).
  12. R. Balian, From Microphysics to Macrophysics: Methods and applications of statistical physics (Springer, 2003).
  13. O. Penrose, Fundation of Statistical Mechanics: A deduc- tive Treatment (Dover Publications, 2005).
  14. D. S. Betts and R. E. Turner, Introductory Statistical Mechanics (Addison Wesley, 1992).
  15. Y. M. Guttman, The concept of probability in statistical mechanics (Cambridge University Press, 2000).
  16. G. V. Rosser, An introduction to statistical physics (Ellis Horwood publishers, 1982).
  17. B. Diu, D. Guthmann, C.and Lederer, and B. Roulet, Physique Statistique (Hermann, 2001).
  18. D. S. Lemons, A student's guide to entropy (Cambridge university press, 2013).
  19. A. Ben-Naim, Entropy and the Second Law (World Sci- entific, 2012).
  20. G. H. Wannier, Statistical Physics (Dover, 1966).
  21. B. H. Lavenda, Statistical Physics: A probabilistic Ap- proach (Wiley Interscience, 1991).
  22. C. B. P. Finn, Thermal Physics, 2nd ed. (CRC Press, 1993).
  23. J. M. Seddon and J. D. Gale, Thermodynamics and sta- tistical mechanics, 1st ed. (RSC publishing, 2001).
  24. D. Kondepudi and I. Prigogine, Modern thermodynamics, 2nd ed. (Wiley, 2015).
  25. N. Sator and N. Pavloff, Physique Statistique, 1st ed. (Vuibert, 2016).
  26. D. Goodstein, Thermal physics, Energy and Entropy, 1st ed. (Cambridge University Press, 2015).
  27. S. J. Blundell and K. M. Blundell, Concepts in thermal physics, 1st ed. (Oxford University Press, 2010).
  28. L. Landau and E. M. Lifshitz, Statistical Physics part 1, 3rd ed. (Elsevier, 1980).
  29. J. W. Gibbs, Elementary Principles in Statistical Me- chanics (Ox Bow Press, 1981).
  30. Some disagreement on where to put exactly the N ! per- sists but as far as mathematics is concerned it is equiva- lent.
  31. J. W. Gibbs, Connecticut Acad. Sci. , 108 (1876).
  32. E. T. Jaynes, in Maximum Entropy and Bayesian Meth- ods, edited by C. Smith, G. Erickson, and P. Neudorfer (Kluwer Academic, 1992) pp. 1-22.
  33. D. Wallace, "Thermodynamics as control theory," (2013).
  34. A. M. L. Messiah and O. W. Greenberg, Phys. Rev. 136, B248 (1964).
  35. O. W. Greenberg and A. M. L. Messiah, Phys. Rev. 138, B1155 (1965).
  36. E. T. Jaynes, "Clearing up mysteries -the origi- nal goal," in Maximum Entropy and Bayesian Meth- ods: Cambridge, England, 1988 , edited by J. Skilling (Springer Netherlands, Dordrecht, 1989) pp. 1-27.
  37. J. J. Salacuse, J.Chem.Phys. 81, 2468 (1984).
  38. J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, W. B. STS-73 Space Shuttle Crew, Russel, and P. M. Chaikin, Nature 387, 883 (1997).
  39. D. Frenkel, Nat. Mat. 14, 9 (2015).
  40. R. H. Swendsen, Am. J. Phys. 74, 187 (2006).
  41. D. Frenkel, Mol. Phys. 112, 2325 (2014).
  42. M. Ozawa and L. Berthier, J. Chem. Phys. 146, 014502 (2017).
  43. M. E. Cates and V. N. Manoharan, Soft. Matt. 15, 6538 (2015).
  44. F. Paillusson and I. Pagonabarraga, J. Stat. Mech. 2014, P10038 (2014).
  45. In more technical terms, the density ρ ∆ C (x) can be in- terpreted as the Radon-Nikodym derivative of the prob- ability measure of a random variable X ∆ defined as the conditional expectation of X with respect to the sub-σ- algebra (made of the set of the ∆x covering the domain of integration of X) of the Borel σ-algebra.
  46. This limit must be interpreted in a careful way for it does not exist in actuality. One must interpret ∆x as compris- ing two contributions Λ(x) and such that ∆x = Λ(x) and interpret the limit when ∆x tends to zero as the limit when tends to zero at fixed Λ(x). A diverging term in -ln appears which makes the limit non-existent. To by- pass this issue, one may regularise by subtracting -ln from the limit.
  47. P. Maynar and E. Trizac, Phys. Rev. Lett. 106, 160603 (2011).
  48. D. M. Endres and J. E. Schindelin, IEEE Trans. Inf. The- ory. 49, 1858 (2003).
  49. P. Sollich, J. Phys. Cond. Matt. 14, 79 (2002).
  50. L. Szilar, Z. Phys. 53, 840 (1929).
  51. R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
  52. C. H. Bennett, Stud. Hist. Philos. Sci. B 34, 501 (2003).
  53. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, Nature 5, 183 (2012).
  54. P. Enders, Progr. Phys. 3, 85 (2007).
  55. P. Enders, Entropy 11, 454 (2009).