Academia.eduAcademia.edu

Outline

Early Development of Intestinal Microbiota

2012, Gastroenterology Clinics of North America

https://doi.org/10.1016/J.GTC.2012.08.001

Abstract

Early acquisition and maintenance of a healthy intestinal microbiota is critical to the longterm health of the host; and the mechanisms through which this occurs are beginning to be elucidated. Factors that lead to alterations in microbial composition during infancy are associated with inadequate and inappropriate host immune responses, which lead to the development of disease. A greater understanding of these factors and of these mechanisms will unlock potential strategies to modulate the acquisition and maintenance of a human microbiota that maintains and promotes health. These strategies will be critical in battling the epidemic of noncommunicable immunerelated diseases encountered in the modern world.

References (108)

  1. Sjogren YM, Tomicic S, Lundberg A, et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy 2009;39:1842-51.
  2. Sudo N, Sawamura S, Tanaka K, et al. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 1997;159:1739-45.
  3. Krajmalnik-Brown R, Ilhan ZE, Kang DW, et al. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 2012;27:201-14. Early Development of Intestinal Microbiota
  4. O'Toole PW, Claesson MJ. Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J 2010;20:281-91.
  5. Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota. PLoS Biol 2007;5:e177.
  6. Ringel-Kulka T. Targeting the intestinal microbiota in the pediatric population: a clinical perspective. Nutr Clin Pract 2012;27:226-34.
  7. Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr 2009;98:229-38.
  8. Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 2011;17:478-82.
  9. Lievin-Le Moal V, Servin AL. The front line of enteric host defense against unwel- come intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 2006;19:315-37.
  10. Bezirtzoglou E, Stavropoulou E. Immunology and probiotic impact of the newborn and young children intestinal microflora. Anaerobe 2011;17:369-74.
  11. Neu J, Rushing J. Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis. Clin Perinatol 2011;38:321-31.
  12. Hopkins MJ, Macfarlane GT, Furrie E, et al. Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation anal- yses. FEMS Microbiol Ecol 2005;54:77-85.
  13. Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intes- tinal microbiota in early infancy. Pediatrics 2006;118:511-21.
  14. Wang M, Ahrne S, Antonsson M, et al. T-RFLP combined with principal compo- nent analysis and 16S rRNA gene sequencing: an effective strategy for compar- ison of fecal microbiota in infants of different ages. J Microbiol Methods 2004;59: 53-69.
  15. Hattori M, Taylor TD. The human intestinal microbiome: a new frontier of human biology. DNA Res 2009;16:1-12.
  16. Wang M, Karlsson C, Olsson C, et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol 2008;121: 129-34.
  17. Hayashi H, Takahashi R, Nishi T, et al. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 2005; 54:1093-101.
  18. Barker DJ. The fetal and infant origins of adult disease. BMJ 1990;301:1111.
  19. Kaplan JL, Shi HN, Walker WA. The role of microbes in developmental immuno- logic programming. Pediatr Res 2011;69:465-72.
  20. DiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture- based investigation. PLoS One 2008;3:e3056.
  21. Han YW, Shen T, Chung P, et al. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol 2009;47: 38-47.
  22. Neu J, Young CM, Mai V. The developing intestinal microbiome: implications for the neonate. In: Cleason CA, Devaskar S, editors. Avery's diseases of the newborn. 9th edition. Philadelphia: Elsevier; 2012. p. 1016-21.
  23. Ege MJ, Bieli C, Frei R, et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age chil- dren. J Allergy Clin Immunol 2006;117:817-23.
  24. Penders J, Stobberingh EE, Thijs C, et al. Molecular fingerprinting of the intes- tinal microbiota of infants in whom atopic eczema was or was not developing. Clin Exp Allergy 2006;36:1602-8.
  25. Wegienka G, Havstad S, Zoratti EM, et al. Regulatory T cells in prenatal blood samples: variability with pet exposure and sensitization. J Reprod Immunol 2009;81:74-81.
  26. Aichbhaumik N, Zoratti EM, Strickler R, et al. Prenatal exposure to household pets influences fetal immunoglobulin E production. Clin Exp Allergy 2008;38: 1787-94.
  27. Schaub B, Liu J, Hoppler S, et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol 2009; 123:774-82.
  28. Fujimura KE, Slusher NA, Cabana MD, et al. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 2010;8:435-54.
  29. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habi- tats in newborns. Proc Natl Acad Sci U S A 2010;107:11971-5.
  30. Corr SC, Hill C, Gahan CG. Understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens. Adv Food Nutr Res 2009;56:1-15.
  31. Kelly D, Campbell JI, King TP, et al. Commensal anaerobic gut bacteria atten- uate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 2004;5:104-12.
  32. Fanaro S, Chierici R, Guerrini P, et al. Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 2003;91:48-55.
  33. Biasucci G, Benenati B, Morelli L, et al. Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr 2008;138:1796S-800S.
  34. Biasucci G, Rubini M, Riboni S, et al. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev 2010;86(Suppl 1):13-5.
  35. Gronlund MM, Lehtonen OP, Eerola E, et al. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 1999;28:19-25.
  36. Salminen S, Gibson GR, McCartney AL, et al. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 2004;53: 1388-9.
  37. Adlerberth I, Strachan DP, Matricardi PM, et al. Gut microbiota and development of atopic eczema in 3 European birth cohorts. J Allergy Clin Immunol 2007;120: 343-50.
  38. Penders J, Thijs C, van den Brandt PA, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 2007;56:661-7.
  39. Huurre A, Kalliomaki M, Rautava S, et al. Mode of delivery -effects on gut micro- biota and humoral immunity. Neonatology 2008;93:236-40.
  40. Bager P, Melbye M, Rostgaard K, et al. Mode of delivery and risk of allergic rhinitis and asthma. J Allergy Clin Immunol 2003;111:51-6.
  41. Bager P, Wohlfahrt J, Westergaard T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy 2008;38:634-42.
  42. Thavagnanam S, Fleming J, Bromley A, et al. A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy 2008;38: 629-33.
  43. Eggesbo M, Botten G, Stigum H, et al. Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol 2003;112:420-6.
  44. Cardwell CR, Stene LC, Joner G, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia 2008;51:726-35.
  45. Decker E, Engelmann G, Findeisen A, et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 2010; 125:e1433-40.
  46. Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 2011;121:2126-32.
  47. Zhou L, He G, Zhang J, et al. Risk factors of obesity in preschool children in an urban area in China. Eur J Pediatr 2011;170:1401-6.
  48. Huh SY, Rifas-Shiman SL, Zera CA, et al. Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort study. Arch Dis Child 2012;97(7):610-6.
  49. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000;30: 61-7.
  50. Gronlund MM, Gueimonde M, Laitinen K, et al. Maternal breast-milk and intes- tinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin Exp Allergy 2007;37: 1764-72.
  51. Gueimonde M, Laitinen K, Salminen S, et al. Breast milk: a source of bifidobac- teria for infant gut development and maturation? Neonatology 2007;92:64-6.
  52. Martin R, Jimenez E, Heilig H, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 2009;75:965-9.
  53. Perez PF, Dore J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 2007;119:e724-32.
  54. Penders J, Vink C, Driessen C, et al. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett 2005;243:141-7.
  55. Klaassens ES, Boesten RJ, Haarman M, et al. Mixed-species genomic microar- ray analysis of fecal samples reveals differential transcriptional responses of bifidobacteria in breast-and formula-fed infants. Appl Environ Microbiol 2009; 75:2668-76.
  56. Fanaro S, Marten B, Bagna R, et al. Galacto-oligosaccharides are bifidogenic and safe at weaning: a double-blind randomized multicenter study. J Pediatr Gastroenterol Nutr 2009;48:82-8.
  57. Deming DM, Reidy KC, Briefel RR, et al. The Feeding Infants and Toddlers Study (FITS) 2008: dramatic changes in the amount and quality of vegetables in the diet occur after the first year of life (abstract). Faseb J 2012;26:374.4.
  58. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroen- terology 2009;137:1716-24.
  59. Nadal I, Santacruz A, Marcos A, et al. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes (Lond) 2009;33:758-67.
  60. Turnbaugh PJ, Backhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008;3:213-23.
  61. Willing BP, Russell SL, Finlay BB. Shifting the balance: antibiotic effects on host- microbiota mutualism. Nat Rev Microbiol 2011;9:233-43.
  62. Magne F, Suau A, Pochart P, et al. Fecal microbial community in preterm infants. J Pediatr Gastroenterol Nutr 2005;41:386-92.
  63. Tanaka S, Kobayashi T, Songjinda P, et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immu- nol Med Microbiol 2009;56:80-7.
  64. Alm B, Erdes L, Mollborg P, et al. Neonatal antibiotic treatment is a risk factor for early wheezing. Pediatrics 2008;121:697-702.
  65. Marra F, Lynd L, Coombes M, et al. Does antibiotic exposure during infancy lead to development of asthma?: a systematic review and metaanalysis. Chest 2006; 129:610-8.
  66. Verhulst SL, Vael C, Beunckens C, et al. A longitudinal analysis on the associa- tion between antibiotic use, intestinal microflora, and wheezing during the first year of life. J Asthma 2008;45:828-32.
  67. Johnson CC, Ownby DR, Alford SH, et al. Antibiotic exposure in early infancy and risk for childhood atopy. J Allergy Clin Immunol 2005;115:1218-24.
  68. Watanabe J, Fujiwara R, Sasajima N, et al. Administration of antibiotics during infancy promoted the development of atopic dermatitis-like skin lesions in NC/ Nga mice. Biosci Biotechnol Biochem 2010;74:358-63.
  69. Bevins CL, Salzman NH. The potter's wheel: the host's role in sculpting its micro- biota. Cell Mol Life Sci 2011;68:3675-85.
  70. Forno E, Onderdonk AB, McCracken J, et al. Diversity of the gut microbiota and eczema in early life. Clin Mol Allergy 2008;6:11.
  71. Gore C, Munro K, Lay C, et al. Bifidobacterium pseudocatenulatum is associ- ated with atopic eczema: a nested case-control study investigating the fecal mi- crobiota of infants. J Allergy Clin Immunol 2008;121:135-40.
  72. Hong PY, Lee BW, Aw M, et al. Comparative analysis of fecal microbiota in infants with and without eczema. PLoS One 2010;5:e9964.
  73. Kirjavainen PV, Arvola T, Salminen SJ, et al. Aberrant composition of gut micro- biota of allergic infants: a target of bifidobacterial therapy at weaning? Gut 2002; 51:51-5.
  74. Devereux G. The increase in the prevalence of asthma and allergy: food for thought. Nat Rev Immunol 2006;6:869-74.
  75. Kalliomaki M, Kirjavainen P, Eerola E, et al. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 2001;107:129-34.
  76. Bjorksten B, Sepp E, Julge K, et al. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 2001;108:516-20.
  77. Bjorksten B, Naaber P, Sepp E, et al. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy 1999;29:342-6.
  78. Bisgaard H, Li N, Bonnelykke K, et al. Reduced diversity of the intestinal micro- biota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 2011;128:646-52.
  79. Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 2012;129: 434-40, 440.e1-2.
  80. Holt PG. Postnatal maturation of immune competence during infancy and child- hood. Pediatr Allergy Immunol 1995;6:59-70.
  81. Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 2009;15:1546-58.
  82. De Filippo C, Cavalieri D, Di PM, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010;107:14691-6.
  83. Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005;102:11070-5.
  84. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature 2006;444:1022-3.
  85. Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol 2010;26: 5-11.
  86. Reinhardt C, Reigstad CS, Backhed F. Intestinal microbiota during infancy and its implications for obesity. J Pediatr Gastroenterol Nutr 2009;48:249-56.
  87. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut micro- biome with increased capacity for energy harvest. Nature 2006;444:1027-31.
  88. Vael C, Verhulst SL, Nelen V, et al. Intestinal microflora and body mass index during the first three years of life: an observational study. Gut Pathog 2011;3:8.
  89. Kalliomaki M, Collado MC, Salminen S, et al. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008;87:534-8.
  90. Luoto R, Kalliomaki M, Laitinen K, et al. Initial dietary and microbiological envi- ronments deviate in normal-weight compared to overweight children at 10 years of age. J Pediatr Gastroenterol Nutr 2011;52:90-5.
  91. Dattilo AM, Birch L, Krebs NF, et al. Need for early interventions in the prevention of pediatric overweight: a review and upcoming directions. J Obes 2012;2012: 1-18.
  92. Hallstrom M, Eerola E, Vuento R, et al. Effects of mode of delivery and necrotis- ing enterocolitis on the intestinal microflora in preterm infants. Eur J Clin Micro- biol Infect Dis 2004;23:463-70.
  93. Savino F, Cresi F, Pautasso S, et al. Intestinal microflora in breastfed colicky and non-colicky infants. Acta Paediatr 2004;93:825-9.
  94. Savino F, Cordisco L, Tarasco V, et al. Molecular identification of coliform bacteria from colicky breastfed infants. Acta Paediatr 2009;98:1582-8.
  95. Savino F, Cordisco L, Tarasco V, et al. Lactobacillus reuteri DSM 17938 in infan- tile colic: a randomized, double-blind, placebo-controlled trial. Pediatrics 2010; 126:e526-33.
  96. Savino F, Cordisco L, Tarasco V, et al. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants. BMC Microbiol 2011;11:157.
  97. De Cruz P, Prideaux L, Wagner J, et al. Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflamm Bowel Dis 2012;18:372-90.
  98. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti- inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008;105:16731-6.
  99. Willing B, Halfvarson J, Dicksved J, et al. Twin studies reveal specific imbal- ances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis 2009;15:653-60.
  100. Mondot S, Kang S, Furet JP, et al. Highlighting new phylogenetic specificities of Crohn's disease microbiota. Inflamm Bowel Dis 2011;17:185-92.
  101. Schwiertz A, Jacobi M, Frick JS, et al. Microbiota in pediatric inflammatory bowel disease. J Pediatr 2010;157:240-4.
  102. Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 2007;131:33-45.
  103. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010;328:228-31.
  104. Borody TJ, Warren EF, Leis SM, et al. Bacteriotherapy using fecal flora: toying with human motions. J Clin Gastroenterol 2004;38:475-83.
  105. Grehan MJ, Borody TJ, Leis SM, et al. Durable alteration of the colonic microbio- ta by the administration of donor fecal flora. J Clin Gastroenterol 2010;44: 551-61.
  106. You DM, Franzos MA, Holman RP. Successful treatment of fulminant Clostridium difficile infection with fecal bacteriotherapy. Ann Intern Med 2008;148:632-3.
  107. Saavedra JM. Use of probiotics in pediatrics: rationale, mechanisms of action, and practical aspects. Nutr Clin Pract 2007;22:351-65.
  108. Ianitti PJ, Palmieri B. Therapeutical use of probiotic formulations in clinical prac- tice. Clin Nutr 2010;29:701-25.