Academia.eduAcademia.edu

Outline

Natural Intelligence as the Brain of Intelligent Systems

Sensors

https://doi.org/10.3390/S23052859

Abstract

This article discusses the concept and applications of cognitive dynamic systems (CDS), which are a type of intelligent system inspired by the brain. There are two branches of CDS, one for linear and Gaussian environments (LGEs), such as cognitive radio and cognitive radar, and another one for non-Gaussian and nonlinear environments (NGNLEs), such as cyber processing in smart systems. Both branches use the same principle, called the perception action cycle (PAC), to make decisions. The focus of this review is on the applications of CDS, including cognitive radios, cognitive radar, cognitive control, cyber security, self-driving cars, and smart grids for LGEs. For NGNLEs, the article reviews the use of CDS in smart e-healthcare applications and software-defined optical communication systems (SDOCS), such as smart fiber optic links. The results of implementing CDS in these systems are very promising, with improved accuracy, performance, and lower computational costs. For example, CDS ...

References (85)

  1. Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [CrossRef]
  2. Wang, H.; Agoulmine, N.; Deen, M.J.; Zhao, J. A utility maximization approach for information-communication tradeoff in Wireless Body Area Networks. Pers. Ubiquitous Comput. 2014, 18, 1963-1976. [CrossRef]
  3. Wang, H.; Choi, H.; Agoulmine, N.; Deen, M.J.; Hong, J.W.-K. Information-based energy efficient sensor selection in wireless body area networks. In Proceedings of the IEEE International Conference on Communications-Symposium on Selected Areas in Communications e-Health Track (ICC2011-SAC EH), Kyoto, Japan, 5-9 June 2011; pp. 1-6.
  4. Deen, M.J. Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquitous Comput. 2015, 19, 573-599. [CrossRef]
  5. IBM. An Architectural Blueprint for Autonomic Computing, 3rd ed.; IBM Autonomic Computing White Chapter; IBM: Armonk, NY, USA, 2005; Available online: https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf (accessed on 20 June 2020).
  6. Kephart, J.; Chess, D. The vision of autonomic computing. Computer 2003, 36, 41-50. [CrossRef]
  7. Naghshvarianjahromi, M.; Kumar, S.; Deen, M.J. Brain-Inspired Cognitive Decision Making for Nonlinear and Non-Gaussian Environments. IEEE Access 2019, 7, 180910-180922. [CrossRef]
  8. Fuster, J.M. Cortex and Mind: Unifying Cognition; Oxford University: Oxford, UK, 2003.
  9. Haykin, S. Cognitive Dynamic Systems: Perception-Action Cycle, Radar, and Radio; Cambridge University Press: Cambridge, UK, 2012.
  10. Fatemi, M.; Haykin, S. Cognitive Control: Theory and Application. IEEE Access 2014, 2, 698-710. [CrossRef]
  11. Naghshvarianjahromi, M.; Kumar, S.; Deen, M.J. Brain Inspired Dynamic System for the Quality of Service Control over the Long-Haul Nonlinear Fiber-Optic Link. Sensors 2019, 19, 2175. [CrossRef]
  12. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297. [CrossRef]
  13. Naghshvarianjahromi, M.; Kumar, S.; Deen, M.J. Natural Brain-Inspired Intelligence for Non-Gaussian and Nonlinear Environ- ments with Finite Memory. Appl. Sci. 2020, 10, 1150. [CrossRef]
  14. Raghu, A.; Komorowski, M.; Celi, L.A.; Szolovits, P.; Ghassemi, M. Continuous state-space models for optimal sepsis treatment- A deep reinforcement learning approach. In Proceedings of the Machine Learning for Healthcare (MLHC) 2017, Boston, MA, USA, 18-19 August 2017; pp. 1-17.
  15. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484-489. [CrossRef]
  16. Feng, S.; Haykin, S. Cognitive Risk Control for Transmit-Waveform Selection in Vehicular Radar Systems. IEEE Trans. Veh. Technol. 2018, 67, 9542-9556. [CrossRef]
  17. Oozeer, M.I.; Haykin, S. Cognitive Risk Control for Mitigating Cyber-Attack in Smart Grid. IEEE Access 2019, 7, 125806-125826.
  18. Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Prentice-Hall: Hoboken, NJ, USA, 2009.
  19. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379-423. [CrossRef]
  20. Cover, M.T.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012.
  21. Haykin, S. Cognitive Dynamic Systems: Radar, Control, and Radio. Proc. IEEE 2012, 100, 2095-2103. [CrossRef]
  22. Khozeimeh, F.; Haykin, S. Dynamic spectrum management for cognitive radio: An overview. Wirel. Commun. Mob. Comput. 2009, 9, 1447-1459. [CrossRef]
  23. Haykin, S. The Cognitive Dynamic System for Risk Control. Proc. IEEE 2017, 105, 1470-1473. [CrossRef]
  24. Oozeer, M.I.; Haykin, S. Cognitive Dynamic System for Control and Cyber-Attack Detection in Smart Grid. IEEE Access 2019, 7, 78320-78335. [CrossRef]
  25. Feng, S.; Haykin, S. Cognitive Risk Control for Anti-Jamming V2V Communications in Autonomous Vehicle Networks. IEEE Trans. Veh. Technol. 2019, 68, 9920-9934. [CrossRef]
  26. Fatemi, M.; Setoodeh, P.; Haykin, S. Observability of stochastic complex networks under the supervision of cognitive dynamic systems. J. Complex Netw. 2016, 5, 433-460. [CrossRef]
  27. Feng, S.; Setoodeh, P.; Haykin, S. Smart Home: Cognitive Interactive People-Centric Internet of Things. IEEE Commun. Mag. 2017, 55, 34-39. [CrossRef]
  28. Haykin, S. Artificial Intelligence Communicates with Cognitive Dynamic System for Cybersecurity. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 463-475. [CrossRef]
  29. Haykin, S. Cognitive radio: Brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 2005, 23, 201-220. [CrossRef]
  30. Haykin, S.; Thomson, D.; Reed, J. Spectrum sensing for cognitive radio. Proc. IEEE 2009, 97, 849-877. [CrossRef]
  31. Haykin, S. New vision for the world of wireless communications enabled with cognition. In Proceedings of the 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, ON, Canada, 11-14 September 2011; pp. 2335-2337. [CrossRef]
  32. Setoodeh, P.; Haykin, S.; Moghadam, K.R. Dynamic spectrum supply chain model for cognitive radio networks. In Proceedings of the 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), San Francisco, CA, USA, 25-28 June 2012; pp. 1-6. [CrossRef]
  33. Haykin, S.; Setoodeh, P. Cognitive Radio Networks: The Spectrum Supply Chain Paradigm. IEEE Trans. Cogn. Commun. Netw. 2015, 1, 3-28. [CrossRef]
  34. Chopra, S.; Meindl, P. Supply Chain Management: Strategy, Planning, and Operation, 5th ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 2012.
  35. Mitola, J. Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio. Ph.D. Thesis, School Information and Communication Technology, Royal Institute of Technology (KTH), Stockholm, Sweden, 2000.
  36. Yilmaz, H.; Tugcu, T.; Alagöz, F.; Bayhan, S. Radio environment map as enabler for practical cognitive radio networks. IEEE Commun. Mag. 2013, 51, 162-169. [CrossRef]
  37. Forge, S.; Horvitz, R.; Blackman, C. Perspectives on the Value of Shared Spectrum Access; European Commission; SMART 2011/0017; SCF Associates Ltd.: Hemel Hempstead, UK, 2012; 212p.
  38. Barbarossa, S.; Sardellitti, S.; Di Lorenzo, P. Communicating While Computing: Distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Process. Mag. 2014, 31, 45-55. [CrossRef]
  39. El-Refaey, M.; Magdi, N.; El-Megeed, H.A. Cloud-assisted spectrum management system with trading engine. In Proceedings of the 2014 International Wireless Communications and Mobile Computing Conference (IWCMC), Nicosia, Cyprus, 4-8 August 2014; pp. 953-958. [CrossRef]
  40. Jain, P.C. Rural wireless broadband Internet access in Wireless Regional Area network using cognitive radio. In Proceedings of the 2013 International Conference on Signal Processing And Communication (ICSC), Noida, India, 12-14 December 2013; pp. 98-103. [CrossRef]
  41. Setoodeh, P.; Haykin, S.; Moghadam, K.R. Double-layer dynamics of cognitive radio networks. In Proceedings of the 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), San Francisco, CA, USA, 25-28 June 2012; pp. 1-6. [CrossRef]
  42. Haykin, S. Cognitive dynamic systems. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP '07, Honolulu, HI, USA, 15-20 April 2007; pp. IV-1369-IV-1372.
  43. Haykin, S. Cognitive radar: A way of the future. IEEE Signal Process. Mag. 2006, 23, 30-40. [CrossRef]
  44. Haykin, S. New generation of radar systems enabled with cognition. In Proceedings of the 2010 IEEE Radar Conference, Arlington, VA, USA, 10-14 May 2010; p. 1. [CrossRef]
  45. Kershaw, D.; Evans, R. Optimal waveform selection for tracking systems. IEEE Trans. Inf. Theory 1994, 40, 1536-1550. [CrossRef]
  46. Bar-Shalom, Y.; Li, X.-R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation; John Wiley & Sons: Hoboken, NJ, USA, 2001. [CrossRef]
  47. Gjessing, D.T. Target Adaptive Matched Illumination Radar: Principles and Applications; Peter Peregnins Ltd.: London, UK, 1986.
  48. Guerci, J.R. Cognitive radar: A knowledge-aided fully adaptive approach. In Proceedings of the 2010 IEEE Radar Conference, Arlington, VA, USA, 10-14 May 2010; pp. 1365-1370. [CrossRef]
  49. Haykin, S.; Zia, A.; Xue, Y.; Arasaratnam, I. Control theoretic approach to tracking radar: First step towards cognition. Digit. Signal Process. 2011, 21, 576-585. [CrossRef]
  50. Krishnamurthy, V.; Djonin, D.V. Optimal Threshold Policies for Multivariate POMDPs in Radar Resource Management. IEEE Trans. Signal Process. 2009, 57, 3954-3969. [CrossRef]
  51. Soatto, S. Actionable information in vision. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September-2 October 2009; pp. 2138-2145. [CrossRef]
  52. Kohonen, T. Associative Memory: A System-Theoretical Approach; Springer: New York, NY, USA, 1977.
  53. Hinton, G.E.; Anderson, J.A. Parallel Models of Associative Memory; Lawrence Erlbaum: London, UK, 1989.
  54. Dawson, M.R.W. Minds and Machines: Connectionism and Psychological Modeling; Blackwell: Oxford, UK, 2004.
  55. Haykin, S.; Xue, Y.; Setoodeh, P. Cognitive Radar: Step Toward Bridging the Gap Between Neuroscience and Engineering. Proc. IEEE 2012, 100, 3102-3130. [CrossRef]
  56. Haykin, S.; Fatemi, M.; Setoodeh, P.; Xue, Y. Cognitive control. Proc. IEEE 2012, 100, 3156-3169. [CrossRef]
  57. Haykin, S.; Fuster, J.M. On Cognitive Dynamic Systems: Cognitive Neuroscience and Engineering Learning From Each Other. Proc. IEEE 2014, 102, 608-628. [CrossRef]
  58. Fuster, J.M. The prefrontal cortex makes the brain a pre-adaptive system. Proc. IEEE 2014, 102, 417-426. [CrossRef]
  59. Turing, A.M.I. Computing machinery and intelligence. Mind 1950, LIX, 433-460. [CrossRef]
  60. Feng, S.; Haykin, S. Coordinated Cognitive Risk Control for Bridging Vehicular Radar and Communication Systems. IEEE Trans. Intell. Transp. Syst. 2020, 23, 4135-4150. [CrossRef]
  61. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2017.
  62. Haykin, S.; Fuster, J.M.; Findlay, D.; Feng, S. Cognitive Risk Control for Physical Systems. IEEE Access 2017, 5, 14664-14679.
  63. Bono, R.; Blanca, M.J.; Arnau, J.; Gómez-Benito, J. Non-normal Distributions Commonly Used in Health, Education, and Social Sciences: A Systematic Review. Front. Psychol. 2017, 8, 1602. [CrossRef]
  64. Si, Y.; Liu, R.-B. Diagnostic Performance of Monoexponential DWI Versus Diffusion Kurtosis Imaging in Prostate Cancer: A Systematic Review and Meta-Analysis. Am. J. Roentgenol. 2018, 211, 358-368. [CrossRef]
  65. Maurer, M.H.; Heverhagen, J.T. Diffusion weighted imaging of the prostate-principles, application, and advances. Transl. Urol. 2017, 6, 490-498. [CrossRef]
  66. Micceri, T. The unicorn, the normal curve, and other improbable creatures. Psychol. Bull. 1989, 105, 156-166. [CrossRef]
  67. Diaz-Serrano, L. Labor income uncertainty, skewness and homeownership: A panel data study for Germany and Spain. J. Urban Econ. 2005, 58, 156-176. [CrossRef]
  68. Shahi, S.N.; Kumar, S.; Liang, X. Analytical modeling of cross-phase modulation in coherent fiber-optic system. Opt. Express 2014, 22, 1426-1439. [CrossRef]
  69. Novák, V.; Perfilieva, I.; Močkoř, J. Mathematical Principles of Fuzzy Logic; Springer Science & Business Media: Berlin, Germany, 1999. [CrossRef]
  70. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338-353. [CrossRef]
  71. Naghshvarianjahromi, M.; Kumar, S.; Deen, M.J. Brain-Inspired Intelligence for Real-Time Health Situation Understanding in Smart e-Health Home Applications. IEEE Access 2019, 7, 180106-180126. [CrossRef]
  72. Agrawal, G.P. Fiber-Optic Communication Systems; John Wiley & Sons: Hoboken, NJ, USA, 1997.
  73. Kumar, S.; Deen, M.J. Fiber Optic Communications: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014.
  74. Naghshvarianjahromi, M.; Majumder, S.; Kumar, S.; Naghshvarianjahromi, N.; Deen, M.J. Natural Brain-Inspired Intelligence for Screening in Healthcare Applications. IEEE Access 2021, 9, 67957-67973. [CrossRef]
  75. Naghshvarianjahromi, M.; Kumar, S.; Deen, M.J. Cognitive decision making for the long-haul fiber optic communication systems. In Proceedings of the 2019 16th Canadian Workshop on Information Theory (CWIT), Hamilton, ON, Canada, 2-5 June 2019; pp. 1-5. [CrossRef]
  76. Naghshvarianjahromi, M.; Kumar, S.; Deen, M.J. Smart long-haul fiber optic communication systems using brain-like intelligence. In Proceedings of the 2019 16th Canadian Workshop on Information Theory (CWIT), Hamilton, ON, Canada, 2-5 June 2019; pp. 1-6. [CrossRef]
  77. Naghshvarianjahromi, M.; Kumar, S.; Deen, J.; Iwaya, T.; Kimura, K.; Yoshida, M.; Hirooka, T.; Nakazawa, M. Experimental demonstration of distortion mitigation in 15 Tbit/s OTDM transmission using a cognitive dynamic system. In Proceedings of the Optoelectronics and Communications Conference 2021, Hong Kong, China, 3-7 July 2021. [CrossRef]
  78. Naghshvarianjahromi, M.; Kumar, S.; Deen, M.J.; Iwaya, T.; Kimura, K.; Yoshida, M.; Hirooka, T.; Nakazawa, M. Software-Defined Fiber Optic Communications for Ultrahigh-Speed Optical Pulse Transmission Systems. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1-10. [CrossRef]
  79. Yoshida, M.; Kimura, K.; Iwaya, T.; Kasai, K.; Hirooka, T.; Nakazawa, M. Single-channel 15.3 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 8.3 bit/s/Hz. Opt. Express 2019, 27, 28952-28967. [CrossRef]
  80. Zhang, S.; Yaman, F.; Nakamura, K.; Inoue, T.; Kamalov, V.; Jovanovski, L.; Vusirikala, V.; Mateo, E.; Inada, Y.; Wang, T. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks. Nat. Commun. 2019, 10, 1-8.
  81. Peng, W.; Takahashi, H.; Morita, I.; Tsuritani, T. Per-symbol-based DBP approach for PDM-CO-OFDM transmission systems. Opt. Express 2013, 21, 1547-1554. [CrossRef] [PubMed]
  82. Vasu, G.; Banerjee, A.; Babaria, D.; Lotlikar, K.; Raut, H. Prediction and Classification of Cardiac Arrhythmia; Stanford University: Stanford, CA, USA, 2014.
  83. Hilmy, A.; Syarif, I.; Badriyah, T. Deep learning algorithm for Arrhythmia detection. In Proceedings of the 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), Surabaya, Indonesia, 26-27 September 2017; pp. 26-32.
  84. Karandikar, M.; Guidi, G. Classification of Arrhythmia Using ECG Data. CS229, USA, Fall 2014. Available online: https://cs229.stanford.edu/proj2014/Manas%20Karandikar,%20Giulia%20Guidi,%20Classification%20Of%20Arrhythmia% 20Using%20ECG%20Data.pdf (accessed on 20 June 2020).
  85. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.