Academia.eduAcademia.edu

Outline

Drag reduction of a slanted-base cylinder using sweeping jets

Physics of Fluids

https://doi.org/10.1063/5.0118386

Abstract

In this work, a pair of sweeping jet actuators is installed underneath the endplate of a slanted-base cylinder at ReD = 200 000. The sweeping jets form a 30° inclined angle with the endplate and are placed at different streamwise locations, and their strength is varied with a momentum coefficient, Cμ, ranging from 3.8 × 10−3 to 6.0 × 10−2. For all the cases examined in this paper, it is found that while a higher Cμ produces a higher drag reduction, the flow control energy efficiency decreases rapidly as Cμ increases. A net energy saving is achieved when Cμ is less than 0.01, and the highest energy efficiency obtained in the present study is 2.8% when the actuator pair is placed at the most upstream location tested. The drag reduction is attributed to the reaction force and an increase in the surface pressure force acting on the endplate produced by the jet pair. The contribution from the former constitutes an increasing proportion of the total drag reduction as Cμ increases leading ...

References (43)

  1. Aider, J. L., Beaudoin, J. F., & Wesfreid, J. E. (2010). Drag and lift reduction of a 3D bluff- body using active vortex generators. Experiments in fluids, 48(5), 771-789.
  2. Beaudoin, J. F., & Aider, J. L. (2008). Drag and lift reduction of a 3D bluff body using flaps. Experiments in fluids, 44(4), 491-501.
  3. Bell, J. R. (2015). The slipstream and wake structure of high-speed trains (Doctoral dissertation, Monash University).
  4. Bell, J. R., Burton, D., Thompson, M. C., Herbst, A. H., & Sheridan, J. (2016). Flow topology and unsteady features of the wake of a generic high-speed train. Journal of Fluids and Structures, 61, 168-183.
  5. Britcher, C. P., & Alcorn, C. W. (1991). Interference-free measurements of the subsonic aerodynamics of slanted-base ogive cylinders. AIAA journal, 29(4), 520-525.
  6. Bulathsinghala, D. S., Wang, Z., & Gursul, I. (2018). Drag reduction by manipulation of afterbody vortices. Journal of Aircraft, 55(6), 2380-2391.
  7. Calarese, W., Crisler, W., & Gustafson, G. (1985). Afterbody drag reduction by vortex generators. In 23rd Aerospace Sciences Meeting (p. 354).
  8. Chen, X., Zhong, S., Ozer, O., & Weightman, A. (2022). Control of afterbody vortices from a slanted-base cylinder using sweeping jets. Physics of Fluids, 34(7), 075115.
  9. Gosen, F., Ostermann, F., Woszidlo, R., Nayeri, C., & Paschereit, C. O. (2015). Experimental investigation of compressibility effects in a fluidic oscillator. In 53rd AIAA Aerospace Sciences Meeting (p. 0782).
  10. Jackson, R. W., Wang, Z., & Gursul, I. (2015). Control of afterbody vortices by blowing. In 45th AIAA Fluid Dynamics Conference (p. 2777).
  11. Jackson, R. (2019). Upswept afterbody drag reduction through active flow control (Doctoral dissertation, University of Bath).
  12. Jackson, R., Wang, Z., & Gursul, I. (2020). Control of upswept afterbody vortices using continuous and pulsed blowing. Journal of Aircraft, 57(1), 76-92.
  13. Koklu, M. (2016). Effect of a Coanda extension on the performance of a sweeping-jet actuator. AIAA Journal, 54(3), 1131-1134.
  14. Koklu, M. (2018). Effects of sweeping jet actuator parameters on flow separation control. AIAA Journal, 56(1), 100-110.
  15. Koklu, M., & Owens, L. R. (2017). Comparison of sweeping jet actuators with different flow- control techniques for flow-separation control. AIAA Journal, 55(3), 848-860.
  16. Krajnović, S. (2009). Shape optimization of high-speed trains for improved aerodynamic performance. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(5), 439-452.
  17. Krüger, O., Bobusch, B. C., Woszidlo, R., & Paschereit, C. O. (2013). Numerical modeling and validation of the flow in a fluidic oscillator. In 21st AIAA computational fluid dynamics conference (p. 3087).
  18. Lee, H. W., & Kwon, H. B. (2014). Analysis of the Effects of SD Plasma on Aerodynamic Drag Reduction of a High-speed Train. Journal of Electrical Engineering and Technology, 9(5), 1712-1718.
  19. McCluney, B., & Marshall, J. (1967). Drag development of the Belfast: an account of the methods taken to solve the Belfast drag problem. Aircraft Engineering and Aerospace Technology.
  20. Mehta, R. D., & Bradshaw, P. (1979). Design rules for small low speed wind tunnels. The Aeronautical Journal, 83(827), 443-453.
  21. Metka, M., Gregory, J., Sassoon, A., & McKillen, J. (2015). Scaling considerations for fluidic oscillator flow control on the square-back Ahmed vehicle model. SAE International Journal of Passenger Cars-Mechanical Systems, 8(2015-01-1561), 328-337.
  22. Moffat, R. J., "Describing the Uncertainties in Experimental Results," Experimental Thermal and Fluid Science, Vol. 1, No. 1, 1988, pp. 3-17.
  23. Mitchell, A. M., & Délery, J. (2001). Research into vortex breakdown control. Progress in Aerospace Sciences, 37(4), 385-418.
  24. Ostermann, F., Woszidlo, R., Nayeri, C. N., & Paschereit, C. O. (2018). Properties of a sweeping jet emitted from a fluidic oscillator. Journal of Fluid Mechanics, 857, 216-238.
  25. Ostermann, F., Woszidlo, R., Nayeri, C. N., & Paschereit, C. O. (2019). The interaction between a spatially oscillating jet emitted by a fluidic oscillator and a cross-flow. Journal of Fluid Mechanics, 863, 215-241.
  26. Orellano, A., & Sperling, S. (2009). Aerodynamic improvements and associated energy demand reduction of trains. In The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains (pp. 219-231). Springer, Berlin, Heidelberg.
  27. Ott, C., Gallas, Q., Delva, J., Lippert, M., & Keirsbulck, L. (2019). High frequency characterization of a sweeping jet actuator. Sensors and Actuators A: Physical, 291, 39-47.
  28. Phillips, E., & Wygnanski, I. (2013). Use of sweeping jets during transient deployment of a control surface. AIAA journal, 51(4), 819-828.
  29. Schmidt, H. J., Woszidlo, R., Nayeri, C. N., & Paschereit, C. O. (2017). Separation control with fluidic oscillators in water. Experiments in Fluids, 58(8), 1-17.
  30. Stouffer, R. D., & Bower, R. (1998). Fluidic flow meter with fiber optic sensor. Patent US, 5827976.
  31. Song, J., Wang, S., Wen, X., Li, Z., Lu, H., Kong, X., & Liu, Y. (2022). Active Flow Control in an S-Shaped Duct at Mach 0.4 Using Sweeping Jet Actuators. Experimental Thermal and Fluid Science, 110699.
  32. Sun, Z., Song, J., & An, Y. (2010). Optimization of the head shape of the CRH3 high speed train. Science China Technological Sciences, 53(12), 3356-3364.
  33. Tian, H. (2019). Review of research on high-speed railway aerodynamics in China. Transportation Safety and Environment, 1(1).
  34. Tomac, M. N., & Gregory, J. W. (2018). Oscillation characteristics of mutually impinging dual jets in a mixing chamber. Physics of Fluids, 30(11), 117102.
  35. Veerasamy, D., Tajik, A. R., Pastur, L., & Parezanović, V. (2022). Effect of base blowing by a large-scale fluidic oscillator on the bistable wake behind a flat-back Ahmed body. Physics of Fluids, 34(3), 035115.
  36. Wen, X., Li, Z., Zhou, L., Yu, C., Muhammad, Z., Liu, Y., ... & Liu, Y. (2020). Flow dynamics of a fluidic oscillator with internal geometry variations. Physics of Fluids, 32(7), 075111.
  37. Wortman, A. (1999). Reduction of fuselage form drag by vortex flows. Journal of Aircraft, 36(3), 501-506.
  38. Woszidlo, R., Stumper, T., Nayeri, C., & Paschereit, C. O. (2014). Experimental study on bluff body drag reduction with fluidic oscillators. In 52nd aerospace sciences meeting (p. 0403).
  39. Woszidlo, R., Ostermann, F., & Schmidt, H. J. (2019). Fundamental properties of fluidic oscillators for flow control applications. AIAA Journal, 57(3), 978-992.
  40. Xia, X. J., & Bearman, P. W. (1983). An experimental investigation of the wake of an axisymmetric body with a slanted base. Aeronautical Quarterly, 34(1), 24-45.
  41. Zigunov, F., Sellappan, P., & Alvi, F. (2020). Reynolds number and slant angle effects on the flow over a slanted cylinder afterbody. Journal of Fluid Mechanics, 893.
  42. Zigunov, F., Sellappan, P., & Alvi, F. (2021). Beyond actuator line arrays in active flow control studies: Lessons from a genetic algorithm approach. Physical Review Fluids, 6(8), 083903.
  43. Zigunov, F., Sellappan, P., & Alvi, F. (2022). A bluff body flow control experiment with