Committee Scoring Rules: Axiomatic Characterization and Hierarchy
2018, arXiv (Cornell University)
Abstract
Committee scoring voting rules are multiwinner analogues of positional scoring rules which constitute an important subclass of single-winner voting rules. We identify several natural subclasses of committee scoring rules, namely, weakly separable, representation-focused, top-kcounting, OWA-based, and decomposable rules. We characterize SNTV, Bloc, and k-Approval Chamberlin-Courant as the only nontrivial rules in pairwise intersections of these classes. We provide some axiomatic characterizations for these classes, where monotonicity properties appear to be especially useful. The class of decomposable rules is new to the literature. We show that it strictly contains the class of OWA-based rules and describe some of the applications of decomposable rules.
References (86)
- K. Arrow. Social Choice and Individual Values. John Wiley and Sons, 1951 (revised editon, 1963).
- H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, and T. Walsh. Justified representation in approval-based committee voting. Social Choice and Welfare, 48(2):461-485, 2017.
- H. Aziz, E. Elkind, P. Faliszewski, M. Lackner, and P. Skowron. The Condorcet principle for multiwinner elections: From shortlisting to proportionality. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pages 84-90, 2017.
- H. Aziz, E. Elkind, S. Huang, M. Lackner, L. Sanchez-Fernandez, and P. Skowron. On the complexity of extended and proportional justified representation. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018. To appear.
- H. Aziz, S. Gaspers, J. Gudmundsson, S. Mackenzie, N. Mattei, and T. Walsh. Computational aspects of multi-winner approval voting. In Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems, pages 107-115, 2015.
- M. Balinski and H. P. Young. Fair Representation: Meeting the Ideal of One Man, One Vote. Yale University Press, 1982. (2nd Edition [with identical pagination], Brookings Institution Press, 2001).
- S. Barberà and D. Coelho. How to choose a non-controversial list with k names. Social Choice and Welfare, 31(1):79-96, 2008.
- S. Barber and B. Dutta. Implementability via protective equilibria. Journal of Mathematical Economics, 10(1):49-65, 1982.
- N. Betzler, A. Slinko, and J. Uhlmann. On the computation of fully proportional representa- tion. Journal of Artificial Intelligence Research, 47:475-519, 2013.
- S. Brams, M. Kilgour, and R. Sanver. A minimax procedure for electing committees. Public Choice, 132(3-4):401-420, 2007.
- R. Bredereck, P. Faliszewski, A. Igarashi, M. Lackner, and P. Skowron. Multiwinner elec- tions with diversity constraints. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018. To appear.
- R. Bredereck, P. Faliszewski, A. Kaczmarczyk, R. Niedermeier, P. Skowron, and N. Talmon. Robustness among multiwinner voting rules. In Proceedings of the 10th International Sympo- sium on Algorithmic Game Theory, pages 80-92, 2017.
- M. Brill, R. Freeman, S. Janson, and M. Lackner. Phragmén's voting methods and justified representation. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, pages 406-413, 2017.
- M. Brill, J.-F. Laslier, and P. Skowron. Multiwinner approval rules as apportionment methods. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, pages 414-420, 2017.
- J. Byrka, P. Skowron, and K. Sornat. Proportional approval voting, harmonic k-median, and negative association. Technical Report arXiv:1704.02183 [cs.DS], arXiv.org, June 2017.
- L. Celis, L. Huang, and N. Vishnoi. Group fairness in multiwinner voting. Technical Report arXiv:1710.10057 [cs.CY], arXiv.org, Oct. 2017.
- B. Chamberlin and P. Courant. Representative deliberations and representative decisions: Proportional representation and the Borda rule. American Political Science Review, 77(3):718- 733, 1983.
- P. Chebotarev and E. Shamis. Characterizations of scoring methods for preference aggregation. Annals of Operations Research, 80:299-332, 1998.
- S. Ching. A simple characterization of plurality rule. Journal of Economic Theory, 71(1):298- 302, 1996.
- D. Cornaz, L. Galand, and O. Spanjaard. Bounded single-peaked width and proportional representation. In Proceedings of the 20th European Conference on Artificial Intelligence, pages 270-275, Aug. 2012.
- A. Darmann. How hard is it to tell which is a Condorcet committee? Mathematical Social Sciences, 66(3):282-292, 2013.
- B. Debord. An axiomatic characterization of Borda's k-choice function. Social Choice and Welfare, 9(4):337-343, 1992.
- M. Dummett. Voting Procedures. Oxford University Press, 1984.
- E. Elkind, P. Faliszewski, J. F. Laslier, P. Skowron, A. Slinko, and N. Talmon. What do multiwinner voting rules do? an experiment over the two-dimensional euclidean domain. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, pages 494-501, 2017.
- E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko. Properties of multiwinner voting rules. Social Choice and Welfare, 48(3):599-632, 2017.
- E. Elkind and A. Ismaili. OWA-based extensions of the Chamberlin-Courant rule. In Pro- ceedings of the 4th International Conference on Algorithmic Decision Theory, pages 486-502, 2015.
- E. Elkind, J. Lang, and A. Saffidine. Condorcet winning sets. Social Choice and Welfare, 44(3):493-517, 2015.
- P. Faliszewski, M. Lackner, D. Peters, and N. Talmon. Effective heuristics for committee scoring rules. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018. To appear.
- P. Faliszewski, J. Sawicki, R. Schaefer, and M. Smolka. Multiwinner voting in genetic algo- rithms. IEEE Intelligent Systems, 32(1):40-48, 2016.
- P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. Committee scoring rules: Axiomatic classification and hierarchy. In Proceedings of the 25th International Joint Conference on Artificial Intelligence, pages 250-256, 2016.
- P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. Multiwinner analogues of the plurality rule: Axiomatic and algorithmic views. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, pages 482-488, 2016.
- P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. Multiwinner rules on paths from k- Borda to Chamberlin-Courant. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pages 192-198, 2017.
- P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. Multiwinner voting: A new challenge for social choice theory. In U. Endriss, editor, Trends in Computational Social Choice, pages 27-47. AI Access, 2017.
- P. Faliszewski, A. Slinko, K. Stahl, and N. Talmon. Achieving fully proportional representation by clustering voters. In Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems, pages 296-304, 2016.
- D. Felsenthal and Z. Maoz. Normative properties of four single-stage multi-winner electoral procedures. Behavioral Science, 37:109-127, 1992.
- P. Fishburn. An analysis of simple voting systems for electing committees. SIAM Journal on Applied Mathematics, 41(3):499-502, 1981.
- P. Fishburn. Majority committees. Journal of Economic Theory, 25(2):255-268, 1981.
- P. Fishburn and W. Gehrlein. Borda's rule, positional voting, and Condorcet's simple majority principle. Public Choice, 28(1):79-88, 1976.
- P. Gärdenfors. Positionalist voting functions. Theory and Decision, 4(1):1-24, 1973.
- W. Gehrlein. The condorcet criterion and committee selection. Mathematical Social Sciences, 10(3):199-209, 1985.
- J. Goldsmith, J. Lang, N. Mattei, and P. Perny. Voting with rank dependent scoring rules. In Proceedings of the 28th AAAI Conference on Artificial Intelligence, pages 698-704. AAAI Press, 2014.
- B. Hansson and H. Sahlquist. A proof technique for social choice with variable electorate. Journal of Economic Theory, 13:193-200, 1976.
- R. Izsak, G. Woeginger, and N. Talmon. Committee selection with interclass and intraclass synergies. In Proceedings of the 32st AAAI Conference on Artificial Intelligence, 2018.
- S. Janson. Phragmén's and Thiele's election methods. Technical Report arXiv:1611.08826 [math.HO], arXiv.org, 2016.
- J. Kacprzyk, H. Nurmi, and S. Zadrozny. The role of the OWA operators as a unification tool for the representation of collective choice sets. In Recent Developments in the Ordered Weighted Averaging Operators, pages 149-166. Springer, 2011.
- M. Kilgour. Approval balloting for multi-winner elections. In J.-F. Laslier and R. Sanver, editors, Handbook on Approval Voting, pages 105-124. Springer, 2010.
- M. Kilgour and E. Marshall. Approval balloting for fixed-size committees. In Electoral Systems, Studies in Choice and Welfare, volume 12, pages 305-326, 2012.
- M. Lackner and D. Peters. Preferences single-peaked on a circle. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, pages 649-655, 2017.
- M. Lackner and P. Skowron. Consistent approval-based multi-winner rules. Technical Report arXiv:1704.02453 [cs.GT], arXiv.org, Apr. 2017.
- A. Lijphart and B. Grofman. Choosing an Electoral System: Issues and Alternatives. Praeger, New York, 1984.
- T. Lu and C. Boutilier. Budgeted social choice: From consensus to personalized decision making. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pages 280-286, 2011.
- T. Lu and C. Boutilier. Value-directed compression of large-scale assignment problems. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, pages 1182-1190, 2015.
- E. Maskin. Nash equilibrium and welfare optimality. The Review of Economic Studies, 66(1):23-38, 1999.
- K. May. A set of independent necessary and sufficient conditions for simple majority decision. Econometrica, 20(4):680-684, 1952.
- V. Merlin. The axiomatic characterization of majority voting and scoring rules. Mathematical Social Sciences, 41(161):87-109, 2003.
- B. Monroe. Fully proportional representation. American Political Science Review, 89(4):925- 940, 1995.
- R. Myerson. Axiomatic derivation of scoring rules without the ordering assumption. Social Choice and Welfare, 12(1):59-74, 1995.
- G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular set functions. Mathematical Programming, 14(1):265-294, 1978.
- D. Peters. Single-peakedness and total unimodularity: Efficiently solve voting problems with- out even trying. Technical Report arXiv:1609.03537 [cs.GT], arXiv.org, Sept. 2016.
- D. Peters and E. Elkind. Preferences single-peaked on nice trees. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, pages 594-600, 2016.
- E. Phragmén. Sur une méthode nouvelle pour réaliser, dans les élections, la représentation proportionnelle des partis. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar, 51(3):133-137, 1894.
- E. Phragmén. Proportionella val. En valteknisk studie. Svenska spörsmål 25. Lars Hökersbergs förlag, Stockholm, 1895.
- E. Phragmén. Sur la théorie des élections multiples. Öfversigt af Kongliga Vetenskaps- Akademiens Förhandlingar, 53:181-191, 1896.
- M. Pivato. Variable-population voting rules. Journal of Mathematical Economics, 49(3):210- 221, 2013.
- A. Procaccia, J. Rosenschein, and A. Zohar. On the complexity of achieving proportional representation. Social Choice and Welfare, 30(3):353-362, 2008.
- F. Pukelsheim. Proportional Representation: Apportionment Methods and Their Applications. Springer, 2014.
- T. Ratliff. Some startling inconsistencies when electing committees. Social Choice and Welfare, 21(3):433-454, 2003.
- T. Ratliff and D. Saari. Complexities of electing diverse committees. Social Choice and Welfare, 43(1):55-71, 2014.
- J. Richelson. A characterization result for the plurality rule. Journal of Economic Theory, 19(2):548-550, 1978.
- L. Sánchez-Fernández and J. Fisteus. Monotonicity axioms in approval-based multi-winner voting rules. Technical Report arXiv:1710.04246 [cs.GT], arXiv.org, Oct. 2017.
- S. Sekar, S. Sikdar, and L. Xia. Condorcet consistent bundling with social choice. In Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems, pages 33-41, 2017.
- P. Skowron. FPT approximation schemes for maximizing submodular functions. Information and Computation, 257:65-78, 2017.
- P. Skowron and P. Faliszewski. Chamberlin-courant rule with approval ballots: Approximating the maxcover problem with bounded frequencies in fpt time. Journal of Artificial Intelligence Research, 60:687-716, 2017.
- P. Skowron, P. Faliszewski, and J. Lang. Finding a collective set of items: From proportional multirepresentation to group recommendation. Artificial Intelligence, 241:191-216, 2016.
- P. Skowron, P. Faliszewski, and A. Slinko. Achieving fully proportional representation: Ap- proximability result. Artificial Intelligence, 222:67-103, 2015.
- P. Skowron, P. Faliszewski, and A. Slinko. Axiomatic characterization of committee scoring rules. Technical Report arXiv:1604.01529 [cs.GT], arXiv.org, Apr. 2016.
- P. Skowron, M. Lackner, and M. B. D. P. E. Elkind. Proportional rankings. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pages 409-415, 2017.
- P. Skowron, L. Yu, P. Faliszewski, and E. Elkind. The complexity of fully proportional repre- sentation for single-crossing electorates. Theoretical Computer Science, 569:43-57, 2015.
- J. Smith. Aggregation of preferences with variable electorate. Econometrica, 41(6):1027-1041, 1973.
- T. Thiele. Om flerfoldsvalg. In Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger, pages 415-441. 1895.
- N. Tideman and D. Richardson. Better voting methods through technology: The refinement- manageability trade-off in the Single Transferable Vote. Public Choice, 103(1-2):13-34, 2000.
- R. Yager. On ordered weighted averaging aggregation operators in multicriteria decisionmak- ing. IEEE Transactions on Systems, Man and Cybernetics, 18(1):183-190, 1988.
- H. Young. An axiomatization of Borda's rule. Journal of Economic Theory, 9(1):43-52, 1974.
- H. Young. Social choice scoring functions. SIAM Journal on Applied Mathematics, 28(4):824- 838, 1975.
- L. Yu, H. Chan, and E. Elkind. Multiwinner elections under preferences that are single-peaked on a tree. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pages 425-431, 2013.
- F. Zanjirani and M. Hekmatfar, editors. Facility Location: Concepts, Models, and Case Studies. Springer, 2009.