Academia.eduAcademia.edu

Outline

Ultra-efficient DC-gated all-optical graphene switch

2022, Journal of Optics

https://doi.org/10.1088/2040-8986/AC8A5C

Abstract

The ultrafast response and broadband absorption of all-optical graphene switches are highly desirable features for on-chip photonic switching. However, because graphene is an atomically thin material, its absorption of guided optical modes is relatively low, resulting in high saturation thresholds and switching energies for these devices. To boost the absorption of graphene, we present a practical design of an electrically-biased all-optical graphene switch that is integrated into silicon slot waveguides, which strongly confine the optical mode in the slotted region and enhance its interaction with graphene. Moreover, the design incorporates a silicon slab layer and a hafnia dielectric layer to electrically tune the saturation threshold and the switching energy of the device by applying DC voltages of <0.5 V. Using this device, a high extinction ratio (ER) of 10.3 dB, a low insertion loss (IL) of <0.7 dB, and an ultraefficient switching energy of 79 fJ/bit at 0.23 V bias are attainable for a 40 µm long switch. The reported performance metrics for this device are highly promising and are expected to serve the needs of next-generation photonic computing systems.

References (40)

  1. Chai Z, Hu X, Wang F, Niu X, Xie J and Gong Q 2017 Advanced Optical Materials 5 1600665
  2. Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H and Notomi M 2020 Nature Photonics 14 37-43
  3. Alaloul M and Rasras M 2021 ACS Omega
  4. Giambra M A, Miseikis V, Pezzini S, Marconi S, Montanaro A, Fabbri F, Sorianello V, Ferrari A C, Coletti C and Romagnoli M 2021 ACS nano 15 3171-3187
  5. Alaloul M and Khurgin J B 2022 Optics Express 30 1950-1966
  6. Alexander K, Hu Y, Pantouvaki M, Brems S, Asselberghs I, Gorza S P, Huyghebaert C, Van Campenhout J, Kuyken B and Van Thourhout D 2015 Electrically controllable saturable absorption in hybrid graphene-silicon waveguides CLEO: Science and Innovations (Optical Society of America) pp STh4H-7
  7. Wang H, Yang N, Chang L, Zhou C, Li S, Deng M, Li Z, Liu Q, Zhang C, Li Z et al. 2020 Photonics Research 8 468-474
  8. Alaloul M and Rasras M 2021 JOSA B 38 602-610
  9. Robertson J 2004 The European physical journal applied physics 28 265-291
  10. Mikolajick T, Müller S, Schenk T, Yurchuk E, Slesazeck S, Schröder U, Flachowsky S, van Bentum R, Kolodinski S, Polakowski P et al. 2014 Advances in Science and Technology 95 136-145
  11. Chen P Y, He Z Y, Cha M Y, Liu H, Zhu H, Chen L, Sun Q Q, Ding S J and Zhang D W 2021 physica status solidi (a) 218 2000635
  12. Bonando M G, Araújo M C and Saito L A 2018 All-fiber graphene electro-optic modulators with different dielectric materials 2018 SBFoton International Optics and Photonics Conference (SBFoton IOPC) (IEEE) pp 1-4
  13. Serna S, Zhang W, Leroux X, Gao D, Zhang D, Vivien L and Cassan E 2014 JOSA B 31 2021-2028
  14. Leuthold J, Koos C and Freude W 2010 Nature photonics 4 535-544
  15. Wang Z, Zhu N, Tang Y, Wosinski L, Dai D and He S 2009 Optics letters 34 1498-1500
  16. Rah Y, Jin Y, Kim S and Yu K 2019 Optics letters 44 3797-3800
  17. Alaloul M and Khurgin J 2021 IEEE Photonics Journal
  18. Hanson G W 2008 Journal of Applied Physics 103 064302
  19. Al-Kuhaili M 2004 Optical Materials 27 383-387
  20. Yakubovsky D I, Arsenin A V, Stebunov Y V, Fedyanin D Y and Volkov V S 2017 Optics express 25 25574-25587
  21. Liu J M and Lin I T 2018 Graphene photonics (Cambridge University Press)
  22. Alaloul M and Khurgin J B 2022 IEEE Journal of Selected Topics in Quantum Electronics 28 1-8
  23. Alaloul M, Khurgin J B, Al-Ani I, As'ham K, Huang L, Hattori H T and Miroshnichenko A E 2022 Optics Letters 47 3640-3643
  24. Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Advanced Functional Materials 19 3077-3083
  25. Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q H, Tang D and Loh K P 2011 Nano Research 4 297-307
  26. Zhang F, Han S, Liu Y, Wang Z and Xu X 2015 Applied Physics Letters 106 091102
  27. Tielrooij K J, Piatkowski L, Massicotte M, Woessner A, Ma Q, Lee Y, Myhro K S, Lau C N, Jarillo-Herrero P, van Hulst N F et al. 2015 Nature nanotechnology 10 437-443
  28. Chen Y, Li Y, Zhao Y, Zhou H and Zhu H 2019 Science advances 5 eaax9958
  29. Song J C, Reizer M Y and Levitov L S 2012 Physical review letters 109 106602
  30. Ma Q, Gabor N M, Andersen T I, Nair N L, Watanabe K, Taniguchi T and Jarillo-Herrero P 2014 Physical review letters 112 247401
  31. Chen J H, Jang C, Adam S, Fuhrer M, Williams E D and Ishigami M 2008 Nature physics 4 377-381
  32. Graham M W, Shi S F, Ralph D C, Park J and McEuen P L 2013 Nature Physics 9 103-108
  33. Lin Y, Ma Q, Shen P C, Ilyas B, Bie Y, Liao A, Ergeçen E, Han B, Mao N, Zhang X et al. 2019 Science advances 5 eaav1493
  34. Song J C, Rudner M S, Marcus C M and Levitov L S 2011 Nano letters 11 4688-4692
  35. Shiue R J, Gao Y, Wang Y, Peng C, Robertson A D, Efetov D K, Assefa S, Koppens F H, Hone J and Englund D 2015 Nano letters 15 7288-7293
  36. Yan J and Fuhrer M S 2011 Physical review letters 107 206601
  37. Zhu W, Perebeinos V, Freitag M and Avouris P 2009 Physical Review B 80 235402
  38. Sun F, Xia L, Nie C, Shen J, Zou Y, Cheng G, Wu H, Zhang Y, Wei D, Yin S et al. 2018 Nanotechnology 29 135201
  39. Qiu C, Zhang C, Zeng H and Guo T 2021 Journal of Lightwave Technology 39 2099-2105
  40. Sun F, Xia L, Nie C, Qiu C, Tang L, Shen J, Sun T, Yu L, Wu P, Yin S et al. 2019 Applied Physics Express 12 042009