Academia.eduAcademia.edu

Outline

Computing modular equations for Shimura curves

2012, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1205.5217

Abstract

In the classical setting, the modular equation of level N for the modular curve X 0 (1) is the polynomial relation satisfied by j(τ) and j(N τ), where j(τ) is the standard elliptic j-function. In this paper, we will describe a method to compute modular equations in the setting of Shimura curves. The main ingredient is the explicit method for computing Hecke operators on the spaces of modular forms on Shimura curves developed in [15].

References (15)

  1. Pilar Bayer and Artur Travesa. Uniformizing functions for certain Shimura curves, in the case D = 6. Acta Arith., 126(4):315-339, 2007.
  2. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
  3. Reinier Bröker, Kristin Lauter, and Andrew V. Sutherland. Modular polynomials via isogeny volcanoes. Math. Comp., 81(278):1201-1231, 2012.
  4. Noam D. Elkies. Shimura curve computations. In Algorithmic number theory (Portland, OR, 1998), volume 1423 of Lecture Notes in Comput. Sci., pages 1-47. Springer, Berlin, 1998.
  5. Eric Errthum. Singular moduli of Shimura curves. Canad. J. Math., 63(4):826-861, 2011.
  6. Hervé Jacquet and Robert P. Langlands. Automorphic forms on GL(2). Lecture Notes in Mathematics, Vol. 114. Springer-Verlag, Berlin, 1970.
  7. Santiago Molina. Ribet bimodules and the specialization of Heegner points. Israel J. Math., 2012.
  8. Hideo Shimizu. Theta series and automorphic forms on GL 2 . J. Math. Soc. Japan, 24:638-683, 1972.
  9. Goro Shimura. Construction of class fields and zeta functions of algebraic curves. Ann. of Math. (2), 85:58- 159, 1967.
  10. W. A. Stein et al. Sage Mathematics Software. The Sage Development Team, 2012. http://www.sagemath.org.
  11. Peter Stiller. Special values of Dirichlet series, monodromy, and the periods of automorphic forms. Mem. Amer. Math. Soc., 49(299):iv+116, 1984.
  12. John Voight. Quadratic forms and quaternion algebras: Algorithms and arithmetics. Ph.D. thesis, University of California, Berkeley, 2005.
  13. John Voight and John Willis. Computing power series expansions of modular forms. preprint, 2012.
  14. Yifan Yang. On differential equations satisfied by modular forms. Math. Z., 246(1-2):1-19, 2004.
  15. Yifan Yang. Schwarzian differential equations and Hecke eigenforms on Shimura curves. Compositio Math., to appear, arxiv:1110.6284, 2012.