Modal logic, fundamentally
2024, Advances in Modal Logic
Abstract
Non-classical generalizations of classical modal logic have been developed in the contexts of constructive mathematics and natural language semantics. In this paper, we discuss a general approach to the semantics of non-classical modal logics via algebraic representation theorems. We begin with complete lattices L equipped with an antitone operation ¬ sending 1 to 0, a completely multiplicative operation □, and a completely additive operation ◊. Such lattice expansions can be represented by means of a set X together with binary relations ◁, R, and Q, satisfying some first-order conditions, used to represent (L, ¬), □, and ◊, respectively. Indeed, any lattice L equipped with such a ¬, a multiplicative □, and an additive ◊ embeds into the lattice of propositions of a frame (X, ◁, R, Q). Building on our recent study of fundamental logic, we focus on the case where ¬ is dually self-adjoint (a ≤ ¬b implies b ≤ ¬a) and ◊¬a ≤ ¬□a. In this case, the representations can be constrained so that R = Q, i.e., we need only add a single relation to (X, ◁) to represent both □ and ◊. Using these results, we prove that a system of fundamental modal logic is sound and complete with respect to an elementary class of bi-relational structures (X, ◁, R).
References (57)
- Aguilera, J. P. and J. Bydzovský, Fundamental logic is decidable, ACM Transactions on Computational Logic (Forthcoming), https://doi.org/10.1145/3665328.
- Allwein, G. and C. Hartonas, Duality for bounded lattices (1993), Indiana University Logic Group, Preprint Series, IULG-93-25 (1993).
- Almeida, A., Canonical extensions and relational representations of lattices with negation, Studia Logica 91 (2009), pp. 171-199.
- Battilotti, G. and G. Sambin, Basic logic and the cube of its extensions, in: A. Cantini, E. Casari and P. Minari, editors, Logic and Foundations of Mathematics, Synthese Library 280, Kluwer Academic Publishers, 1999 pp. 165-186.
- Bezhanishvili, N., A. Dmitrieva, J. de Groot and T. Moraschini, Positive modal logic beyond distributivity, Annals of Pure and Applied Logic 175 (2024), p. 103374.
- Bezhanishvili, N. and W. H. Holliday, Choice-free Stone duality, The Journal of Symbolic Logic 85 (2020), pp. 109-148.
- Birkhoff, G., "Lattice Theory," American Mathematical Society, New York, 1940.
- Bobzien, S. and I. Rumfitt, Intuitionism and the modal logic of vagueness, Journal of Philosophical Logic 49 (2020), pp. 221-248.
- Božić, M. and K. Došen, Models for normal intuitionistic modal logics, Studia Logica 43 (1984), pp. 217-245.
- Conradie, W., A. Craig, A. Palmigiano and N. M. Wijnberg, Modelling informational entropy, in: R. Iemhoff, M. Moortgat and R. Queiroz, editors, Logic, Language, Information, and Computation. WoLLIC 2019, Lectures Notes in Computer Science 11541, 2019, pp. 140-160.
- Conradie, W., S. Frittella, A. Palmigiano, M. Piazzai, A. Tzimoulis and N. M. Wijnberg, Categories: How I learned to stop worrying and love two sorts, in: J. Väänänen, A. Hirvonen and R. de Queiroz, editors, Logic, Language, Information, and Computation. WoLLIC 2016, Lectures Notes in Computer Science 9803, 2016, pp. 145-164.
- Craig, A. P. K., M. Haviar and H. A. Priestley, A fresh perspective on canonical extensions for bounded lattices, Applied Categorical Structures 21 (2013), pp. 725-749.
- Dalla Chiara, M. L. and R. Giuntini, Quantum logics, in: D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, Springer, 2002 pp. 129-228.
- Dmitrieva, A., "Positive modal logic beyond distributivity: duality, preservation and completeness," Master's thesis, University of Amsterdam (2021).
- Došen, K., Negative modal operators in intuitionistic logic, Publications de l'Institut Mathématique. Nouvelle Série 35 (1984), pp. 3-14.
- Došen, K., Negation as a modal operator, Reports on Mathematical Logic 20 (1986), pp. 15-27.
- Došen, K., Negation in the light of modal logic, in: D. M. Gabbay and H. Wansing, editors, What is Negation?, Kluwer, Dordrecht, 1999 pp. 77-86.
- Dunn, J. M., Star and perp: Two treatments of negation, Philosophical Perspectives 7 (1993), pp. 331-357.
- Dunn, J. M., Generalized ortho negation, in: H. Wansing, editor, Negation. A Notion in Focus, de Gruyter, Berlin, 1996 pp. 3-26.
- Dunn, J. M., A comparative study of various model-theoretic treatments of negation: a history of formal negation, in: D. M. Gabbay and H. Wansing, editors, What is Negation?, Kluwer, Dordrecht, 1999 pp. 23-51.
- Dunn, J. M. and C. Zhou, Negation in the context of gaggle theory, Studia Logica 80 (2005), pp. 235-264.
- Dzik, W., E. Orlowska and C. van Alten, Relational representation theorems for general lattices with negations, in: Relations and Kleene Algebra in Computer Science. RelMiCS 2006, Lecture Notes in Computer Science 4136 (2006), pp. 162-176.
- Dzik, W., E. Orlowska and C. van Alten, Relational representation theorems for lattices with negations: A survey, Lecture Notes in Artificial Intelligence 4342 (2006), pp. 245- 266.
- Fischer Servi, G., On modal logic with an intuitionistic base, Studia Logica 36 (1977), pp. 141-149.
- Fitch, F. B., "Symbolic Logic: An Introduction," The Ronald Press Company, New York, 1952.
- Fitch, F. B., Natural deduction rules for obligation, American Philosophical Quarterly 3 (1966), pp. 27-38.
- Gehrke, M., Generalized Kripke frames, Studia Logica 84 (2006), pp. 241-275.
- Gehrke, M. and J. Harding, Bounded lattice expansions, Journal of Algebra 238 (2001), pp. 345-371.
- Gehrke, M., J. Harding and Y. Venema, MacNeille completions and canonical extensions, Transactions of the American Mathematical Society 358 (2005), pp. 573-590.
- Gentzen, G., Untersuchungen über das logische Schließen, Mathematische Zeitschrift 39 (1935), pp. 176-210, 405-431.
- Gentzen, G., Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen 112 (1936), pp. 493-565.
- Gödel, K., Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines Mathematischen Kolloquiums 4 (1933), pp. 34-38.
- Goldblatt, R., Morphisms and duality for polarities and lattices with operators (2019), arXiv:1902.09783 [math.LO].
- Goldblatt, R. I., Semantic analysis of orthologic, Journal of Philosophical Logic 3 (1974), pp. 19-35.
- Hartonas, C., Discrete duality for lattices with modal operators, Journal of Logic and Computation 29 (2018), pp. 71-89.
- Hartonas, C. and E. Or lowska, Representation of lattices with modal operators in two- sorted frames, Fundamenta Informaticae 166 (2019), pp. 29-56.
- Heyting, A., Die formalen Regeln der intuitionistischen Logik I, Sitzungsberichte der Preussischen Akademie der Wissenschaften 49 (1930), pp. 42-65.
- Holliday, W. H., Possibility frames and forcing for modal logic (2015), forthcoming in The Australasian Journal of Logic, UC Berkeley Working Paper in Logic and the Methodology of Science, https://escholarship.org/uc/item/0tm6b30q.
- Holliday, W. H., Possibility semantics, in: M. Fitting, editor, Selected Topics from Contemporary Logics, Landscapes in Logic, College Publications, 2021 pp. 363-476, arXiv:2405.06852 [math.LO].
- Holliday, W. H., Three roads to complete lattices: Orders, compatibility, polarity, Algebra Universalis 82 (2021), article number 26.
- Holliday, W. H., Compatibility and accessibility: lattice representations for semantics of non-classical and modal logics, in: D. F. Duque and A. Palmigiano, editors, Advances in Modal Logic, Vol. 14, College Publications, London, 2022 pp. 507-529, arXiv:2201.07098 [math.LO].
- Holliday, W. H., A fundamental non-classical logic, Logics 1 (2023), pp. 36-79.
- Holliday, W. H., Preconditionals, in: I. Sedlár, editor, The Logica Yearbook 2023, College Publications, Forthcoming arXiv:2402.02296 [math.LO].
- Holliday, W. H. and M. Mandelkern, The orthologic of epistemic modals, Journal of Philosophical Logic (Forthcoming), arXiv:2203.02872 [cs.LO].
- Jónsson, B. and A. Tarski, Boolean Algebras with Operators. Part I., American Journal of Mathematics 73 (1951), pp. 891-939.
- Kenny, A., Human abilities and dynamic modalities, in: J. Manninen and R. Tuomela, editors, Essays on Explanation and Understanding, Synthese Library 72, Springer, Dordrecht, 1976 pp. 209-232.
- Massas, G., B-frame duality, Annals of Pure and Applied Logic 174 (2023), p. 103245.
- Massas, G., Goldblatt-thomason theorems for fundamental (modal) logic, in: A. Ciabattoni and D. Gabelaia, editors, Advances in Modal Logic, Vol. 14, College Publications, London, Forthcoming ArXiv:2406.10182 [math.LO].
- Mönting, J. S., Cut elimination and word problems for varieties of lattices, Algebra Universalis 12 (1981), pp. 290-321.
- Or lowska, E. and D. Vakarelov, Lattice-based modal algebras and modal logics, in: P. Hájek, L. Valdés-Villanueva and D. Westerståhl, editors, Logic, methodology and philosophy of science. Proceedings of the 12th international congress, College Publications, London, 2005 pp. 147-170.
- Ploščica, M., A natural representation of bounded lattices, Tatra Mountains Mathematical Publication 5 (1995), pp. 75-88.
- Přenosil, A., Compatibility between modal operators in distributive modal logic (2023), arXiv:2311.10017 [math.LO].
- Rebagliato, J. and V. Verdú, On the algebraization of some Gentzen systems, Fundamenta Informaticae 17 (1993), pp. 319-338.
- Urquhart, A., A topological representation theory for lattices, Algebra Universalis 8 (1978), pp. 45-58.
- Vakarelov, D., Consistency, completeness and negation, in: G. Priest, R. Routley and J. Norman, editors, Paraconsistent Logic: Essays on the Inconsistent, Philosophia Verlag, Munich, 1989 pp. 328-368.
- Wijesekera, D., Constructive modal logics I, Annals of Pure and Applied Logic 50 (1990), pp. 271-301.
- Zhong, S., A general relational semantics of propositional logic: Axiomatization, in: A. Silva, R. Wassermann and R. Queiroz, editors, Logic, Language, Information, and Computation. WoLLIC 2021, Lecture Notes in Computer Science 13038 (2021), pp. 82-99.