Academia.eduAcademia.edu

Outline

Moving with the flow: an automatic tour of unsteady flow fields

2019, Journal of Visualization

https://doi.org/10.1007/S12650-019-00592-3

Abstract

We present a novel framework that creates an automatic tour of unsteady flow fields for exploring internal flow features. Our solution first identifies critical flow regions for time steps and computes their temporal correspondence. We then extract skeletons from critical regions for feature orientation and pathline placement. The key part of our algorithm determines which critical region to focus on at each time step and derives the region traversal order over time using a combination of energy minimization and dynamic programming strategies. After that, we create candidate viewpoints based on the construction of a simplified mesh enclosing each focal region and select the best viewpoints using a viewpoint quality measure. Finally, we design a spatiotemporal tour that efficiently traverses focal regions over time. We demonstrate our algorithm with several unsteady flow data sets and perform a user study and an expert evaluation to confirm the benefits of including internal viewpoints in the design.

References (31)

  1. Bai Z, Yang R, Zhou Z, Tao Y, Lin H (2016) Topology aware view path design for time-varying volume data. Journal of Visualization 19(4):797-809
  2. Bordoloi UD, Shen HW (2005) View selection for vol- ume rendering. In: Proceedings of IEEE Visualization Conference, pp 487-494
  3. Buatois L, Caumon G, Lévy B (2009) Concurrent num- ber cruncher -a GPU implementation of a general sparse linear solver. International Journal of Parallel, Emergent and Distributed Systems 24(3):205-223
  4. Campbell MJ, Julious SA, Altman DG (1995) Estimat- ing sample sizes for binary, ordered categorical, and continuous outcomes in two group comparisons. British Medical Journal 311(7031):1145-1148
  5. Chandler J, Obermaier H, Joy KI (2015) Interpolation- based pathline tracing in particle-based flow visualiza- tion. IEEE Transactions on Visualization and Computer Graphics 21(1):68-80
  6. Fritz CO, Morris PE, Richler JJ (2012) Effect size esti- mates: Current use, calculations, and interpretation. Jour- nal of Experimental Psychology: General 141(1):2-18
  7. Gagvani N, Silver D (1999) Parameter-controlled vol- ume thinning. Graphical Models and Image Processing 61(3):149-164
  8. Hsu WH, Zhang Y, Ma KL (2013) A multi-criteria ap- proach to camera motion design for volume data anima- tion. IEEE Transactions on Visualization and Computer Graphics 19(12):2792-2801
  9. Janusonis S (2009) Comparing two small samples with an unstable, treatment-independent baseline. Journal of Neuroscience Methods 179(2):173-178
  10. Ji G, Shen HW (2006) Dynamic view selection for time- varying volumes. IEEE Transactions on Visualization and Computer Graphics 12(5):1109-1116
  11. Lane DA (1993) Visualization of time-dependent flow fields. In: Proceedings of IEEE Conference on Visualiza- tion, pp 32-38
  12. Lee TY, Mishchenko O, Shen HW, Crawfis R (2011) View point evaluation and streamline filtering for flow visualization. In: Proceedings of IEEE Pacific Visualiza- tion Symposium, pp 83-90
  13. Lorensen WE, Cline HE (1987) Marching cubes: A high resolution 3D surface construction algorithm. In: Pro- ceedings of ACM SIGGRAPH Conference, pp 163-169
  14. Ma J, Wang C, Shene CK (2013) Coherent view- dependent streamline selection for importance-driven flow visualization. In: Proceedings of IS&T/SPIE Conference on Visualization and Data Analysis, pp 865407:1-865407:15
  15. Ma J, Walker J, Wang C, Kuhl SA, Shene CK (2014) FlowTour: An automatic guide for exploring internal flow features. In: Proceedings of IEEE Pacific Visualiza- tion Symposium, pp 25-32
  16. Marchesin S, Chen CK, Ho C, Ma KL (2010) View- dependent streamlines for 3D vector fields. IEEE Transactions on Visualization and Computer Graphics 16(6):1578-1586
  17. McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M (2010) Over two decades of integration-based, ge- ometric flow visualization. Computer Graphics Forum 29(6):1807-1829
  18. McLoughlin T, Jones MW, Laramee RS, Malki R, Mas- ters I, Hansen CD (2013) Similarity measures for enhanc- ing interactive streamline seeding. IEEE Transactions on Visualization and Computer Graphics 19(8):1342-1353
  19. Meuschke M, Engelke W, Beuing O, Preim B, Lawonn K (2017) Automatic viewpoint selection for exploration of time-dependent cerebral aneurysm data. In: Bildverar- beitung für die Medizin, Springer Vieweg, Berlin, Hei- delberg, pp 352-357
  20. Moberts B, Vilanova A, van Wijk JJ (2005) Evaluation of fiber clustering methods for diffusion tensor imaging. In: Proceedings of IEEE Visualization Conference, pp 65-72
  21. Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H (2003) The state of the art in flow visualisation: Fea- ture extraction and tracking. Computer Graphics Forum 22(4):775-792
  22. Sadlo F, Rigazzi A, Peikert R (2011) Time-dependent visualization of Lagrangian coherent structures by grid advection. In: Topological Methods in Data Analysis and Visualization, Springer Berlin Heidelberg, pp 151-165
  23. Silver D, Wang X (1997) Tracking and visualizing tur- bulent 3D features. IEEE Transactions on Visualization and Computer Graphics 3(2):129-141
  24. Silver D, Wang X (1998) Tracking scalar features in unstructured data sets. In: Proceedings of IEEE Visual- ization Conference, pp 79-86
  25. Spencer B, Laramee RS, Chen G, Zhang E (2009) Evenly spaced streamlines for surfaces. Computer Graphics Fo- rum 28(6):1618-1631
  26. Steinman DA (2000) Simulated pathline visualization of computed periodic blood flow patterns. Journal of Biomechanics 33(5):623-628
  27. Takahashi S, Fujishiro I, Takeshima Y, Nishita T (2005) A feature-driven approach to locating optimal viewpoints for volume visualization. In: Proceedings of IEEE Visu- alization Conference, pp 495-502
  28. Tao J, Ma J, Wang C, Shene CK (2013) A unified ap- proach to streamline selection and viewpoint selection for 3D flow visualization. IEEE Transactions on Visual- ization and Computer Graphics 19(3):393-406
  29. Viola I, Feixas M, Sbert M, Gröller ME (2006) Importance-driven focus of attention. IEEE Transactions on Visualization and Computer Graphics 12(5):933-940
  30. Xu L, Lee TY, Shen HW (2010) An information- theoretic framework for flow visualization. IEEE Transactions on Visualization and Computer Graphics 16(6):1216-1224
  31. Yu H, Wang C, Shene CK, Chen JH (2012) Hierarchical streamline bundles. IEEE Transactions on Visualization and Computer Graphics 18(8):1353-1367