Academia.eduAcademia.edu

Outline

Interactive Exploration and Analysis of Pathlines in Flow Data

2011

Abstract

ABSTRACT The rapid development of large-scale scientific computing nowadays allows to inherently respect the unsteady character of natural phenomena in computational flow simulation. With this new trend to more regularly consider time-dependent flow scenarios, an according new need for advanced exploration and analysis solutions emerges.

References (28)

  1. Avl fire. https://www.avl.com/fire, 2010.
  2. R. Bürger, P. Muigg, H. Doleisch, and H. Hauser. Interactive cross-detector analysis of vortical flow data, 2007.
  3. R. Fuchs, R. Peikert, H. Hauser, F. Sadlo, and P. Muigg. Par- allel vectors criteria for unsteady flow vortices. 14(3):615-626, 2008.
  4. C. Garth, X. Tricoche, and G. Scheuermann. Tracking of vector field singularities in unstructured 3d time-dependent datasets. In VIS '04: Proceedings of the conference on Visualization '04, pages 329-336, Washington, DC, USA, 2004. IEEE Computer Society.
  5. J. C. R. Hunt, A. A. Wray, and P. Moin. Eddies, stream and convergence zones in turbulent flows. In 2. Proceedings of the 1988 Summer Program, pages 193-208, 1988.
  6. J. Jeong and F. Hussain. On the identification of a vortex. Jour- nal of Fluid Mechanics, 285:69-84, 1995.
  7. M. Jiang, R. Machiraju, and D. Thompson. Detection and vi- sualization of vortices. In The Visualization Handbook, pages 295-309. Academic Press, 2005.
  8. C. Johnson. Top scientific visualization research problems. Computer Graphics and Applications, IEEE, 24(4):13-17, July-August 2004.
  9. Z. Konyha, K. Matković, D. Gračanin, M. Jelović, and H. Hauser. Interactive visual analysis of families of function graphs. IEEE Transactions on Visualization and Computer Graphics, 12(6):1373-1385, 2006.
  10. R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf. The state of the art in flow visualization: Dense and texture-based techniques. Computer Graphics Fo- rum, 23(2):203-221, 2004.
  11. Y. Levy, D. Degani, and A. Seginer. Graphical visualization of vortical flows by means of helicity. AIAA Journal, 28:1347- 1352, August 1990.
  12. K. Mahrous, J. Bennett, G. Scheuermann, B. Hamann, and K. I. Joy. Topological segmentation in three-dimensional vec- tor fields. IEEE Transactions on Visualization and Computer Graphics, 10(2):198-205, 2004.
  13. K. Moreland. Diverging color maps for scientific visualization. In ISVC (2), pages 92-103, 2009.
  14. R. Peikert and M. Roth. The "parallel vectors" operator: a vec- tor field visualization primitive. In VIS '99: Proceedings of the conference on Visualization '99, pages 263-270, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.
  15. A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovic, and H. Hauser. On the way towards topology-based visualization of unsteady flow -the state of the art. In EuroGraphics 2010 State of the Art Reports (STARs), 2010.
  16. T. Salzbrunn, C. Garth, G. Scheuermann, and J. Meyer. Path- line predicates and unsteady flow structures. Vis. Comput., 24(12):1039-1051, 2008.
  17. T. Salzbrunn and G. Scheuermann. Streamline predicates. IEEE Transactions on Visualization and Computer Graphics, 12(6):1601-1612, 2006.
  18. K. Shi, H. Theisel, H. Hauser, T. Weinkauf, K. Matkovic, H.- C. Hege, and H.-P. Seidel. Path line attributes -an informa- tion visualization approach to analyzing the dynamic behavior of 3D time-dependent flow fields. In Hans-Christian Hege, Konrad Polthier, and Gerik Scheuermann, editors, Topology- Based Methods in Visualization II, Mathematics and Visualiza- tion, pages 75-88, Grimma, Germany, 2009. Springer.
  19. B. Shneiderman. The eyes have it: A task by data type taxon- omy for information visualizations. In Proc. of the 1996 IEEE Symp. on Visual Languages, page 336, 1996.
  20. R.C. Strawn, D. Kenwriht, and J. Ahmad. Computer visualiza- tion of vortex wake systems. In American Helicopter Society 54th Annual Forum, 1998.
  21. D. Sujudi and R. Haimes. Identification of swirling flow in 3D vector fields. Technical Report 95-1715, AIAA, 1995.
  22. H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Sei- del. Extraction of parallel vector surfaces in 3d time-dependent fields and application to vortex core line tracking. In IN PROC. IEEE VISUALIZATION 2005, pages 631-638, 2005.
  23. H. Theisel and H.-P. Seidel. Feature flow fields. In VISSYM '03: Proceedings of the symposium on Data visualisation 2003, pages 141-148, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.
  24. H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Topo- logical methods for 2d time-dependent vector fields based on stream lines and path lines. IEEE Transactions on Visualization and Computer Graphics, 11(4):383-394, 2005.
  25. D. S. Thompson and C. H. Berdahl, editors. Eduction of swirling structure using the velocity gradient tensor, June 1991.
  26. T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Bound- ary switch connectors for topological visualization of complex 3d vector fields. In In Proc. VisSym 04, pages 183-192, 2004.
  27. D. Weiskopf, F. Schramm, G. Erlebacher, and T. Ertl. Par- ticle and texture based spatiotemporal visualization of time- dependent vector fields. In IEEE Visualization, page 81, 2005.
  28. A. Wiebel and G. Scheuermann. Eyelet particle tracing -steady visualization of unsteady flow. In IEEE VISUALIZATION 2005, pages 607-614. IEEE Computer Society, 2005.