Academia.eduAcademia.edu

Outline

Visualising entanglement in atoms

2018, arXiv (Cornell University)

Abstract

In this work we show how new phase space methods lead to a more complete visualisation of quantum states of atoms in ways that are not possible with usual orbital methods. This method allows us to display quantum correlations (entanglement) between spin and spatial degrees of freedom (spin-orbit coupling), spin-spin degrees of freedom, and more complex combinations of spin and spatial entanglement for the first time. This is important as such properties affect the physical characteristics, and chemistry, of atoms and molecules. Our visualisations are sufficiently accessible that, with some preparation, those with a non-technical background can gain an appreciation of subtle quantum properties of atomic and other systems. By providing new insights and modelling capability, our phase space representation will be of great utility in understanding aspects of atomic physics and chemistry not available with current techniques.

References (37)

  1. K. Boguslawski and P. Tecmer, International Journal of Quantum Chemistry 115, 1289 (2015).
  2. J. S. Dehesa, T. Koga, R. J. Yáñez, A. R. Plastino, and R. O. Esquivel, Journal of Physics B: Atomic, Molecular and Optical Physics 45, 015504 (2012).
  3. R. O. Esquivel, N. Flores-Gallegos, M. Molina-Espíritu, A. R. Plastino, J. C. Angulo, J. Antolín, and J. S. De- hesa, Journal of Physics B: Atomic, Molecular and Opti- cal Physics 44, 175101 (2011).
  4. R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, Scientific Reports 3, 1914 EP (2013).
  5. I. Georgescu, Nature Physics 9, 394 EP (2013).
  6. M. Krenn, M. Malik, M. Erhard, and A. Zeilinger, Philo- sophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 375 (2017), 10.1098/rsta.2015.0442.
  7. M. J. Cooper, Reports on Progress in Physics 48, 415 (1985).
  8. R. M. Singru and R. R. Mishra, Journal of Physics: Con- densed Matter 1, SA21 (1989).
  9. C. Amovilli and N. H. March, Phys. Rev. A 69, 054302 (2004).
  10. J. P. Coe, A. Sudbery, and I. D'Amico, Phys. Rev. B 77, 205122 (2008).
  11. O. Osenda and P. Serra, Phys. Rev. A 75, 042331 (2007).
  12. J. Pipek and I. Nagy, Phys. Rev. A 79, 052501 (2009).
  13. N. A. Besley, D. P. O'Neill, and P. M. W. Gill, Journal of Chemical Physics 118, 2033 (2003).
  14. N. A. Besley and P. M. W. Gill, Journal of Chemical Physics 120, 7290 (2004).
  15. N. A. Besley, Chemical Physics Letters 409, 63 (2005).
  16. P. M. Gill, D. P. O'Neill, and N. A. Besley, Theoretical Chemistry Accounts 109, 241 (2003).
  17. P. M. W. Gill, D. L. Crittenden, D. P. O'Neill, and N. A. Besley, Physical chemistry chemical physics : PCCP 8, 15 (2006).
  18. K. Brádler, M. M. Wilde, S. Vinjanampathy, and D. B. Uskov, Phys. Rev. A 82, 062310 (2010).
  19. J. Cai, S. Popescu, and H. J. Briegel, Phys. Rev. E 82, 021921 (2010).
  20. J. Cai, G. G. Guerreschi, and H. J. Briegel, Phys. Rev. Lett. 104, 220502 (2010).
  21. F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, Phys. Rev. A 81, 062346 (2010).
  22. D. Novoselov, D. M. Korotin, and V. I. Anisimov, ArXiv e-prints (2016), arXiv:1602.02963 [cond-mat.str-el].
  23. M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Wha- ley, Nature Physics 6, 462 EP (2010).
  24. M. C. Tichy, F. Mintert, and A. Buchleitner, Journal of Physics B: Atomic, Molecular and Optical Physics 44, 192001 (2011).
  25. T. Tilma, M. J. Everitt, J. H. Samson, W. J. Munro, and K. Nemoto, Phys. Rev. Lett. 117, 180401 (2016).
  26. R. P. Rundle, P. W. Mills, T. Tilma, J. H. Samson, and M. J. Everitt, Phys. Rev. A 96, 022117 (2017).
  27. R. P. Rundle, T. Tilma, J. H. Samson, V. M. Dwyer, R. F. Bishop, and M. J. Everitt, "A general approach to quantum mechanics as a statistical theory," (2017), arXiv:1708.03814.
  28. S. Habib, K. Shizume, and W. H. Zurek, Physical Review Letters 80, 4361 (1998), quant-ph/9803042.
  29. J. Wurtz, A. Polkovnikov, and D. Sels, Annals of Physics 395, 341 (2018).
  30. A. Polkovnikov, Annals of Physics 325, 1790 (2010).
  31. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum mechanics, Quantum Mechanics (Wiley, 1977).
  32. R. M. G. García-Castelán, W. S. Choe, and Y. C. Lee, Phys. Rev. B 57, 9792 (1998).
  33. H. G. Laguna and R. P. Sagar, Journal of Physics A: Mathematical and Theoretical 45, 025307 (2012).
  34. R. J. Yañez, A. R. Plastino, and J. S. Dehesa, The Eu- ropean Physical Journal D 56, 141 (2009).
  35. For simplicity, and with respect to symmetry, we have chosen a plane grid but this method can be extended to the three spatial dimensions.
  36. The basis states in this paper are represented as Fock states, where |nx, ny, nz are eigenstates of the three dimensional harmonic oscillator and ni indicates the number of photons in the x, y or z component, see [31] for details). The forms of the relevant states are |dxz = |101 , |dyz = |011 , and |d z 2 , ↑ = 1/6 (2 |002 -|200 -|020 ) |↑ .
  37. This work has adopted the notation that the number be- fore the S (or P , D, . . . ) indicates the principal quantum number with the electron index in parentheses.