Spatially dependent atom-photon entanglement
Scientific Reports
https://doi.org/10.1038/S41598-018-32051-8Abstract
The atom-photon entanglement using the Laguerre-Gaussian (LG) beams is studied in the closedloop three-level V-type quantum systems. We consider two schemes with near-degenerate and nondegenerate upper levels: in the first, the effect of the quantum interference due to the spontaneous emission is taken into account and in the second, a microwave plane wave is applied to the upper levels transition. It is shown that the atom-photon entanglement in both schemes depends on the intensity profile as well as the orbital angular momentum (OAM) of the applied fields so that the various spatially dependent entanglement patterns can be generated by Laguerre-Gaussian beams with different OAMs. However, due to the zero intensity,no entanglement appears in the center of the optical vortex beams. As a result, the entanglement between dressed atom and its spontaneous emissions in different points of the atomic vapor cell can be controlled by the OAM of the applied fields. Moreover, our numerical results show that the number of the local maximum degree of entanglement (DEM) peaks depends on the OAM of the applied fields. The degrees of freedom for OAM play a crucial role in spatially dependent atom-photon entanglement in such a way that it may possess broad applications in high-dimensional quantum information processing and data storage.
References (35)
- Brassard, G., Chuang, I., Lloyd, S. & Monroe, C. Quantum computing. Proc. Natl. Acad. Sci. USA 95, 11032-11033 (1998).
- Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865-942 (2009).
- Ficek, Z. & Swain, S. Quantum Coherence and Interference; Theory and Experiments (Springer, 2004).
- Freedman, S. J. & Clauser, J. F. Experimental test of local hidden variables theories. Phys. Rev. Lett. 28, 938-941 (1972).
- Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993).
- Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661 (1991).
- Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824-3851 (1996).
- Benenti, G., Casati, G. & Strini, G. Principles of Quantum Computation and Information; vol 1: Basic Concepts (World Scientific, 2004).
- Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115 (1936).
- Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992).
- Anupriya, J., Ram, N. & Pattabiraman, M. Hanle electromagnetically induced transparency and absorption resonances with a Laguerre Gaussian beam. Phys. Rev. A 81, 043804 (2010).
- Chanu, S. R., Singh, A. K., Brun, B., Pandey, K. & Natarajan, V. Subnatural linewidth in a strongly-driven degenerate two-level system. Opt. Commun. 284, 4957-4960 (2011).
- Akin, T. G., Krzyzewski, S. P., Marino, A. M. & Abraham, E. R. I. Electromagnetically induced transparency with Laguerre-Gaussian modes in ultracold rubidium. Opt. Commun. 339, 209-215 (2015).
- Radwell, N., Clark, T. W., Piccirillo, B., Barnett, S. M. & Franke-Arnold, S. Spatially dependent electromagnetically induced transparency. Phys. Rev. Lett. 114, 123603 (2015).
- Kazemi, S. H. & Mahmoudi, M. Multi-photon resonance phenomena using Laguerre-Gaussian beams. J. Phys. B: At. Mol. Opt. Phys. 49, 245401 (2016).
- Kazemi, S. H., Ghanbari, S. & Mahmoudi, M. Trap split with Laguerre-Gaussian beams. J. Opt. 19, 085503 (2017).
- Amini Sabegh, Z., Maleki, M. A. & Mahmoudi, M. Phase-controlled electromagnetically induced focusing in a closed-loop atomic system. J. Opt. Soc. Am. B 34, 2446-2451 (2017).
- Padgett, M., Courtial, J. & Allen, L. Light's orbital angular momentum. Phys. Today 57, 35-40 (2004).
- Mahmoudi, M. & Evers, J. Light propagation through closed-loop atomic media beyond the multiphoton resonance condition. Phys. Rev. A 74, 063827 (2006).
- Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell's theorem without inequalities. Am. J. Phys. 58, 1131-1143 (1990).
- Krenn, M. et al. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proc. Natl. Acad. Sci. USA 111, 6243-6247 (2014).
- Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313-316 (2001).
- Babazadeh, A. et al. High-dimensional single-photon quantum gates: Concepts and experiments. Phys. Rev. Lett. 119, 180510 (2017).
- Wang, F. et al. Generation of the complete four-dimensional Bell basis. Optica 4, 1462-1467 (2017).
- Vedral, V., Plenio, M. B., Rippin, M. A. & Knight, P. L. Quantifying entanglement. Phys. Rev. Lett. 78, 2275-2279 (1997).
- Audenaert, K., Verstraete, F. & Moor, B. De Variational characterizations of separability and entanglement of formation. Phys. Rev. A 64, 052304 (2001).
- Lo, H. K. & Popescu, S. Concentrating entanglement by local actions: Beyond mean values. Phys. Rev. A 63, 022301 (2001).
- Phoenix, S. J. D. & Knight, P. L. Fluctuations and entropy in models of quantum optical resonance. Ann. Phys. 186, 381-407 (1988).
- Araki, H. & Lieb, E. H. Entropy inequalities. Commun. Math. Phys. 18, 160-170 (1970).
- Phoenix, S. J. D. & Knight, P. L. Establishment of an entangled atom-field state in the Jaynes-Cummings model. Phys. Rev. A 44, 6023 (1991).
- Phoenix, S. J. D. & Knight, P. L. Comment on Collapse and revival of the state vector in the Jaynes-Cummings model: An example of state preparation by a quantum apparatus. Phys. Rev. Lett. 66, 2833 (1991).
- Abazari, M., Mortezapour, A., Mahmoudi, M. & Sahrai, M. Phase-controlled atom-photon entanglement in a three-level V-type atomic system via spontaneously generated coherence. Entropy 13, 1541-1554 (2011).
- Li, Y., Zhou, Z. Y., Ding, D. S. & Shi, B. S. Sum frequency generation with two orbital angular momentum carrying laser beams. J. Opt. Soc. Am. B 32, 407-411 (2015).
- Vickers, J., Burch, M., Vyas, R. & Singh, S. Phase and interference properties of optical vortex beams. J. Opt. Soc. Am. A 25, 823-827 (2008).
- Tate, D. A. & Gallagher, T. F. Microwave-optical two-photon excitation of Rydberg states. Phys. Rev. A 97, 033410 (2018).