Academia.eduAcademia.edu

Outline

Novelty and Cultural Evolution in Modern Popular Music

2022, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.2206.07754

Abstract

The ubiquity of digital music consumption has made it possible to extract information about modern music that allows us to perform large scale analysis of stylistic change over time. In order to uncover underlying patterns in cultural evolution, we examine the relationship between the established characteristics of different genres and styles, and the introduction of novel ideas that fuel this ongoing creative evolution. To understand how this dynamic plays out and shapes the cultural ecosystem, we compare musical artifacts to their contemporaries to identify novel artifacts, study the relationship between novelty and commercial success, and connect this to the changes in musical content that we can observe over time. Using Music Information Retrieval (MIR) data and lyrics from Billboard Hot 100 songs between 1974-2013, we calculate a novelty score for each song's aural attributes and lyrics. Comparing both scores to the popularity of the song following its release, we uncover key patterns in the relationship between novelty and audience reception. Additionally, we look at the link between novelty and the likelihood that a song was influential given where its MIR and lyrical features fit within the larger trends we observed.

References (54)

  1. Mauch, M., MacCallum, R.M., Levy, M., Leroi, A.M.: The evolution of popular music: USA 1960-2010. Royal Society Open Science 2(5), 150081 (2015). doi:10.1098/rsos.150081. Publisher: Royal Society
  2. Weiß, C., Mauch, M., Dixon, S., Müller, M.: Investigating style evolution of Western classical music: A computational approach. Musicae Scientiae 23(4), 486-507 (2019). doi:10.1177/1029864918757595
  3. Serrà, J., Corral, A., Boguñá, M., Haro, M., Arcos, J.L.: Measuring the Evolution of Contemporary Western Popular Music. Scientific Reports 2(1), 521 (2012). doi:10.1038/srep00521. Number: 1 Publisher: Nature Publishing Group
  4. Bomin, S.L., Lecointre, G., Heyer, E.: The Evolution of Musical Diversity: The Key Role of Vertical Transmission. PLOS ONE 11(3), 0151570 (2016). doi:10.1371/journal.pone.0151570. Publisher: Public Library of Science
  5. Prockup, M., Ehmann, A.F., Gouyon, F., Schmidt, E.M., Celma, O., Kim, Y.E.: Modeling Genre with the Music Genome Project: Comparing Human-Labeled Attributes and Audio Features. In: Proceedings of the 16th ISMIR Conference, Malaga, Spain, p. 7 (2015)
  6. Klimek, P., Kreuzbauer, R., Thurner, S.: Fashion and art cycles are driven by counter-dominance signals of elite competition: quantitative evidence from music styles. Journal of The Royal Society Interface 16(151), 20180731 (2019). doi:10.1098/rsif.2018.0731
  7. Magron, P., Févotte, C.: Leveraging the structure of musical preference in content-aware music recommendation. CoRR abs/2010.10276 (2020). arXiv: 2010.10276
  8. Moffat, D., Ronan, D., Reiss, J.D.: An Evaluation of Audio Feature Extraction Toolboxes. In: Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, p. 7 (2015)
  9. Friberg, A., Schoonderwaldt, E., Hedblad, A., Fabiani, M., Elowsson, A.: Using perceptually defined music features in music information retrieval. arXiv:1403.7923 [cs] (2014). doi:10.48550/arXiv.1403.7923
  10. Bertin-Mahieux, T.: Large-Scale Pattern Discovery in Music. PhD thesis, Columbia University (2013). doi:10.7916/D8NC67CT. https://doi.org/10.7916/D8NC67CT
  11. Lippens, S., Martens, J.P., De Mulder, T.: A comparison of human and automatic musical genre classification. In: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, p. (2004). doi:10.1109/ICASSP.2004.1326806. ISSN: 1520-6149
  12. Interiano, M., Kazemi, K., Wang, L., Yang, J., Yu, Z., Komarova, N.L.: Musical trends and predictability of success in contemporary songs in and out of the top charts. Royal Society Open Science 5(5), 171274 (2018). doi:10.1098/rsos.171274. Publisher: Royal Society
  13. Mayerl, M., Votter, M., Zangerle, M.M.E.: Comparing Lyrics Features for Genre Recognition. In: Proceedings of the 1st Workshop on NLP for Music and Audio (NLP4MusA), pp. 73-77. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.nlp4musa-1.15.pdf
  14. Mayer, R., Neumayer, R., Rauber, A.: Combination of audio and lyrics features for genre classification in digital audio collections. In: Proceedings of the 16th ACM International Conference on Multimedia. MM '08, pp. 159-168. Association for Computing Machinery, New York, NY, USA (2008). doi:10.1145/1459359.1459382. https://doi.org/10.1145/1459359.1459382
  15. Hu, X., Downie, J.S., Ehmann, A.F.: Lyric Text Mining in Music Mood Classification. In: Proceedings of the 10th International Society for Music Information Retrieval Conference, Kobe International Conference Center, Kobe, Japan, p. 6 (2009)
  16. Hu, X., Downie, J.S.: Improving mood classification in music digital libraries by combining lyrics and audio. In: Proceedings of the 10th Annual Joint Conference on Digital Libraries. JCDL '10, pp. 159-168. Association for Computing Machinery, New York, NY, USA (2010). doi:10.1145/1816123.1816146. https://doi.org/10.1145/1816123.1816146
  17. McVicar, M., Giorgi, B.D., Dundar, B., Mauch, M.: Lyric document embeddings for music tagging. In: Proc. of the 15th International Symposium On CMMR, Online, p. 10 (2021)
  18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781 [cs] (2013). arXiv: 1301.3781
  19. Le, Q.V., Mikolov, T.: Distributed Representations of Sentences and Documents. arXiv:1405.4053 [cs] (2014). arXiv: 1405.4053
  20. Whalen, R., Lungeanu, A., DeChurch, L., Contractor, N.: Patent Similarity Data and Innovation Metrics. Journal of Empirical Legal Studies 17(3), 615-639 (2020). doi:10.1111/jels.12261. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jels.12261
  21. Askin, N., Mauskapf, M.: What Makes Popular Culture Popular? Product Features and Optimal Differentiation in Music. American Sociological Review 82(5), 910-944 (2017). doi:10.1177/0003122417728662
  22. Askin, N., Mauskapf, M.: Cultural Attributes and their Influence on Consumption Patterns in Popular Music. In: Aiello, L.M., McFarland, D. (eds.) (eds) Social Informatics. SocInfo 2014. Lecture Notes in Computer Science, vol. 8851, pp. 508-530. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13734-6 36
  23. Berger, J., Packard, G.: Are Atypical Things More Popular? Psychological Science 29(7), 1178-1184 (2018). doi:10.1177/0956797618759465. Publisher: SAGE Publications Inc
  24. Anderson, A., Maystre, L., Anderson, I., Mehrotra, R., Lalmas, M.: Algorithmic Effects on the Diversity of Consumption on Spotify. In: Proceedings of The Web Conference 2020, pp. 2155-2165. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366423.3380281
  25. Laurier, C., Grivolla, J., Herrera, P.: Multimodal Music Mood Classification Using Audio and Lyrics. In: 2008 Seventh International Conference on Machine Learning and Applications, pp. 688-693 (2008). doi:10.1109/ICMLA.2008.96
  26. Neumayer, R., Rauber, A.: Integration of Text and Audio Features for Genre Classification in Music Information Retrieval. In: Amati, G., Carpineto, C., Romano, G. (eds.) Advances in Information Retrieval. Lecture Notes in Computer Science, vol. 4425, pp. 724-727. Springer, Berlin, Heidelberg (2007). http://link.springer.com/10.1007/978-3-540-71496-5 78
  27. Saleh, B., Abe, K., Arora, R.S., Elgammal, A.: Toward automated discovery of artistic influence. Multimedia Tools and Applications 75(7), 3565-3591 (2016). doi:10.1007/s11042-014-2193-x
  28. Uzzi, B., Mukherjee, S., Stringer, M., Jones, B.: Atypical Combinations and Scientific Impact. Science 342(6157), 468-472 (2013). doi:10.1126/science.1240474
  29. Li, Y., Zhang, Y., Capra, R.: Analyzing information resources that support the creative process. In: ACM SIGIR Conference on Human Information Interaction And Retrieval. CHIIR '22, pp. 180-190. Association for Computing Machinery, New York, NY, USA (2022). doi:10.1145/3498366.3505817. https://doi.org/10.1145/3498366.3505817 Accessed 2022-04-01
  30. Liu, L., Wang, Y., Sinatra, R., Giles, C.L., Song, C., Wang, D.: Hot streaks in artistic, cultural, and scientific careers. Nature 559(7714), 396-399 (2018). doi:10.1038/s41586-018-0315-8. Number: 7714 Publisher: Nature Publishing Group. Accessed 2020-10-14
  31. Shin, H., Kim, K., Kogler, D.F.: Scientific collaboration, research funding, and novelty in scientific knowledge. PLOS ONE 17(7), 0271678 (2022). doi:10.1371/journal.pone.0271678. Publisher: Public Library of Science. Accessed 2022-08-02
  32. Shi, F., Foster, J.G., Evans, J.A.: Weaving the fabric of science: Dynamic network models of science's unfolding structure. Social Networks 43, 73-85 (2015). doi:10.1016/j.socnet.2015.02.006. Accessed 2021-01-26
  33. Miles, S.A., Rosen, D.S., Barry, S., Grunberg, D., Grzywacz, N.: What to Expect When the Unexpected Becomes Expected: Harmonic Surprise and Preference Over Time in Popular Music. Frontiers in Human Neuroscience 15 (2021). Accessed 2022-05-06
  34. Sreenivasan, S.: Quantitative analysis of the evolution of novelty in cinema through crowdsourced keywords. Scientific Reports 3(1), 2758 (2013). doi:10.1038/srep02758. Number: 1 Publisher: Nature Publishing Group 35.
  35. Jing, E., DeDeo, S., Ahn, Y.-Y.: Sameness Attracts, Novelty Disturbs, but Outliers Flourish in Fanfiction Online. arXiv:1904.07741 [cs] (2019). arXiv: 1904.07741
  36. Park, D., Nam, J., Park, J.: Novelty and influence of creative works, and quantifying patterns of advances based on probabilistic references networks. EPJ Data Science 9(1), 1-15 (2020). doi:10.1140/epjds/s13688-019-0214-8. Number: 1 Publisher: SpringerOpen. Accessed 2020-10-12
  37. Liu, M., Bu, Y., Chen, C., Xu, J., Li, D., Leng, Y., Freeman, R.B., Meyer, E.T., Yoon, W., Sung, M., Jeong, M., Lee, J., Kang, J., Min, C., Song, M., Zhai, Y., Ding, Y.: Pandemics are catalysts of scientific novelty: Evidence from COVID-19. Journal of the Association for Information Science and Technology 73(8), 1065-1078 (2022). doi:10.1002/asi.24612. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.24612
  38. Cheng, D., Joachims, T., Turnbull, D.: Exploring Acoustic Similartiy for Novel Music Recommendation, 7 (2020)
  39. Zangerle, E., Huber, R., Vötter, M., Yang, Y.H.: Hit song prediction: Leveraging low-and high-level audio features. Proceedings of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019, 319-326 (2019). doi:10.5281/zenodo.3258042. Accessed 2020-11-01
  40. Moore, J.L., Chen, S., Joachims, T., Turnbull, D.: Taste Over Time: The Temporal Dynamics of User Preferences. Proceedings of the 14th International Society for Music Information Retrieval Conference, ISMIR 2013, 6 (2013)
  41. Berlyne, D.E.: Novelty, complexity, and hedonic value. Perception & Psychophysics 8(5), 279-286 (1970). doi:10.3758/BF03212593. Accessed 2021-03-19
  42. Chmiel, A., Schubert, E.: Back to the inverted-U for music preference: A review of the literature. Psychology of Music 45(6), 886-909 (2017). doi:10.1177/0305735617697507
  43. Chai, S., Menon, A.: Breakthrough recognition: Bias against novelty and competition for attention. Research Policy 48(3), 733-747 (2019). doi:10.1016/j.respol.2018.11.006
  44. Wang, J., Veugelers, R., Stephan, P.: Bias against novelty in science: A cautionary tale for users of bibliometric indicators. Research Policy 46(8), 1416-1436 (2017). Publisher: Elsevier
  45. Radim Řehůřek, Sojka, P.: Gensim: topic modelling for humans. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45-50. ELRA, Valletta, Malta (2010). https://radimrehurek.com/gensim/models/doc2vec.html
  46. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12(85), 2825-2830 (2011)
  47. Besson, M., Faïta, F., Peretz, I., Bonnel, A.-M., Requin, J.: Singing in the Brain: Independence of Lyrics and Tunes. Psychological Science 9(6), 494-498 (1998). doi:10.1111/1467-9280.00091. Publisher: SAGE Publications Inc
  48. Rigoulot, S., Armony, J.L.: Early selectivity for vocal and musical sounds: electrophysiological evidence from an adaptation paradigm. European Journal of Neuroscience 44(10), 2786-2794 (2016). doi:10.1111/ejn.13391. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/ejn.13391
  49. Peretz, I., Gaudreau, D., Bonnel, A.-M.: Exposure effects on music preference and recognition. Memory & Cognition 26(5), 884-902 (1998). doi:10.3758/BF03201171
  50. Wu, F., Huberman, B.A.: Novelty and collective attention. Proceedings of the National Academy of Sciences 104(45), 17599-17601 (2007). doi:10.1073/pnas.0704916104. Publisher: Proceedings of the National Academy of Sciences
  51. Salganik, M.J., Dodds, P.S., Watts, D.J.: Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market. Science 311(5762), 854-856 (2006). doi:10.1126/science.1121066. Publisher: American Association for the Advancement of Science Section: Report
  52. Jung, S.-G., Salminen, J., Chowdhury, S.A., Ramirez Robillos, D., Jansen, B.J.: Things Change: Comparing Results Using Historical Data and User Testing for Evaluating a Recommendation Task. In: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. CHI EA '20, pp. 1-7. Association for Computing Machinery, New York, NY, USA (2020). doi:10.1145/3334480.3382945. https://doi.org/10.1145/3334480.3382945
  53. Xing, Z., Wang, X., Wang, Y.: Enhancing Collaborative Filtering Music Recommendation by Balancing Exploration and Exploitation. In: Proceedings of the 15th International Society for Music Information Retrieval Conference, Taipei, Taiwan (2014)
  54. Lorince, J., Zorowitz, S., Murdock, J., Todd, P.M.: The Wisdom of the Few? "Supertaggers" in Collaborative Tagging Systems. The Journal of Web Science 1 (2015). doi:10.1561/106.00000002