Abstract
Where possible, automation has been a common response of humankind to many activities that have to be repeated numerous times. The routine identification of specimens of previously described species has many of the characteristics of other activities that have been automated, and poses a major constraint on studies in many areas of both pure and applied biology. In this paper, we consider some of the reasons why automated species identification has not become widely employed, and whether it is a realistic option, addressing the notions that it is too difficult, too threatening, too different or too costly. Although recogniz-ing that there are some very real technical obstacles yet to be overcome, we argue that progress in the development of automated species identification is extremely encouraging that such an approach has the potential to make a valuable contribution to reducing the burden of routine identifications. Vision and enterprise are perhaps more limiting at present than p...
References (92)
- Arbuckle, T. 2002 Automatic identification of bees' species from images of their wings. In Proc. 9th Int. Workshop on Systems, Signals and Image Processing, pp. 509-511. Man- chester, UMIST.
- Arbuckle, T., Schro ¨der, S., Steinhage, V. & Wittmann, D. 2001 Biodiversity informatics in action: identification and monitoring of bee species using ABIS. In Proc. 15th Int. Symp. Informatics for Environmental Protection, ETH Zurich, 10-12 October 2001, vol. 1, pp. 425-430. Zurich: Metropolis.
- Balfoort, H. W., Snoek, J., Smits, J. R. M., Breedveld, L. W., Hofstraat, J. W. & Ringelberg, J. 1992 Automatic identifi- cation of algae: neural network analysis of flow cytometric data. J. Plankton Res. 14, 575-589.
- Banarse, D. S., France, I. & Duller, A. W. G. 2000 Analysis and application of a self-organising image recognition neural network. Adv. Engng Software 31, 937-944.
- Basset, Y., Novotny, V., Miller, S. E. & Pyle, R. 2000 Quan- tifying biodiversity: experiences with parataxonomists and digital photography in New Guinea and Guyana. BioScience 50, 899-908.
- Bichsel, M. & Pentland, A. P. 1994 Human face recognition and the face image set's topology. CVGIP: Image Understand- ing 59, 254-261.
- Phil. Trans. R. Soc. Lond. B (2004)
- Blaxter, M. L. 2004 The promise of a DNA taxonomy. Phil. Trans. R. Soc. Lond. B 359, 669-679. (DOI 10.1098/rstb. 2003.1447.)
- Boddy, L. & Morris, C. W. 1993 Analysis of flow cytometry data-a neural network approach. Binary 5, 17-22.
- Boddy, L. & Morris, C. W. 2000 Artificial neural networks for identification. In Proc. Inaugural Meeting of the BioNET- INTERNATIONAL Group for Computer-Aided Taxonomy (BIGCAT) (ed. D. Chesmore, L. Yorke, P. Bridge & S. Gallagher), pp. 29-37. Egham: BioNET-INTER- NATIONAL Technical Secretariat.
- Boddy, L., Morris, C. W., Wilkins, M. F., Tarran, G. A. & Burkill, P. H. 1994 Neural network analysis of flow cyto- metric data for 40 marine phytoplankton species. Cytometry 15, 283-293.
- Boddy, L., Morris, C. W. & Morgan, A. 1998 Development of artificial neural networks for identification. In Information technology, plant pathology and biodiversity (ed. P. Bridge, P. Jeffries, D. R. Morse & P. R. Scott), pp. 221-231. Wall- ingford: CAB International.
- Boddy, L., Morris, C. W., Wilkins, M. F., Al-Haddad, L., Tar- ran, G. A., Jonker, R. R. & Burkill, P. H. 2000 Identification of 72 phytoplankton species by radial basis function neural network analysis of flow cytometric data. Mar. Ecol. Prog. Ser. 195, 47-59.
- Boddy, L., Wilkins, M. F. & Morris, C. W. 2001 Pattern rec- ognition in flow cytometry. Cytometry 44, 195-209.
- Bouchet, P. 1997 Inventorying the molluscan diversity of the world: what is our rate of progress? Veliger 40, 1-11.
- Chesmore, D. 1999 Technology transfer: applications of elec- tronic technology in ecology and entomology for species identification. Nat. Hist. Res. 5, 111-126.
- Chesmore, D. 2000 Methodologies for automating the identifi- cation of species. In Proc. Inaugural Meeting of the BioNET- INTERNATIONAL Group for Computer-Aided Taxonomy (BIGCAT) (ed. D. Chesmore, L. Yorke, P. Bridge & S. Gallagher), pp. 3-12. Egham: BioNET-INTER- NATIONAL Technical Secretariat.
- Chesmore, E. D. 2001 Application of time domain signal coding and artificial neural networks to passive acoustical identification of animals. Appl. Acoustics 62, 1359-1374.
- Chesmore, E. D., Femminella, O. P. & Swarbrick, M. D. 1998 Automated analysis of insect sounds using time-encoded sig- nals and expert systems-a new method for species identifi- cation. In Information technology, plant pathology and biodiversity (ed. P. Bridge, P. Jeffries, D. R. Morse & P. R. Scott), pp. 273-287. Wallingford: CAB International.
- Cranston, P. & Hillman, T. 1992 Rapid assessment of biodiv- ersity using biological diversity technicians. Aust. Biol. 5, 144-154.
- Culverhouse, P. F. (and 11 others) 1996 Automatic classi- fication of field-collected dinoflagellates by artificial neural network. Mar. Ecol. Prog. Ser. 139, 281-287.
- Dallwitz, M. J., Paine, T. A. & Zurcher, E. J. 1998 Interactive keys. In Information technology, plant pathology and biodiversity (ed. P. Bridge, P. Jeffries, D. R. Morse & P. R. Scott), pp. 201-212. Wallingford: CAB International.
- Daly, H. V., Hoelmer, K., Norman, P. & Allen, T. 1982 Com- puter-assisted measurement and identification of honey bees (Hymenoptera. Apidae). Ann. Entomol. Soc. Am. 75, 591- 594.
- Dietrich, C. H. & Pooley, C. D. 1994 Automated identification of leafhoppers (Homoptera: Cicadellidae: Draeculacephala Ball). Ann. Entomol. Soc. Am. 87, 412-423.
- Dietterich, T. G. 2002 Ensemble learning. In The handbook of brain theory and neural networks, 2nd edn (ed. M. A. Arbib), pp. 405-408. Cambridge, MA: MIT Press.
- Do, M. T., Harp, J. M. & Norris, K. C. 1999 A test of a pat- tern recognition system for identification of spiders. Bull. Entomol. Res. 89, 217-224.
- Dodd, J. C. & Rosendahl, S. 1996 The BEG Expert System-a multimedia identification system for arbuscular mycorrhizal fungi. Mycorrhiza 6, 275-278.
- Edwards, M. & Morse, D. R. 1995 The potential for com- puter-aided identification in biodiversity research. Trends Ecol. Evol. 10, 153-158.
- France, I., Duller, A. W. G., Duller, G. A. T. & Lamb, H. F. 2000 A new approach to automated pollen analysis. Quatern. Sci. Rev. 19, 537-546.
- Gamez, R. 1991 Biodiversity conservation through facilitation of its sustainable use: Costa Rica's national biodiversity insti- tute. Trends Ecol. Evol. 6, 377-378.
- Garland, E. D. & Zimmer, C. A. 2002 Techniques for the identification of bivalve larvae. Mar. Ecol. Prog. Ser. 225, 299-310.
- Gaston, K. J. 1993 Spatial patterns in the description and rich- ness of the Hymenoptera. In Hymenoptera and biodiversity (ed. J. LaSalle & I. D. Gauld), pp. 277-293. Wallingford: CAB International Press.
- Gaston, K. J. 1994 Spatial patterns of species description: how is our knowledge of the global insect fauna growing? Biol. Conserv. 67, 37-40.
- Gaston, K. J. & May, R. M. 1992 Taxonomy of taxonomists. Nature 356, 281-281.
- Gaston, K. J. & Mound, L. A. 1993 Taxonomy, hypothesis testing and the biodiversity crisis. Proc. R. Soc. Lond. B 251, 139-142.
- Gauld, I. D., O'Neill, M. A. & Gaston, K. J. 2000 Driving Miss Daisy: the performance of an automated insect identifi- cation system. In Hymenoptera: evolution, biodiversity and bio- logical control (ed. A. D. Austin & M. Dowton), pp. 303- 312. Collingwood, VIC: CSIRO.
- Geist, A., Berguelin, A., Dongarra, J., Weicheng, J., Manchek, R. & Sunderam, V. 2003 PVM: Parallel Virtual Machine. A users guide and tutorial for network parallel computing. Cam- bridge, MA: MIT Press.
- Godfray, H. C. J. 2002 Challenges for taxonomy-the disci- pline will have to reinvent itself if it is to survive and flourish. Nature 417, 17-19.
- Grover, L. K. 1997 Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709-4712.
- Guo, B., Lam, K-M., Lin, K-H. & Siu, W.-C. 2003 Human face recognition based on spatially weighted Hausdorff dis- tance. Pattern Recognition Lett. 24, 499-507.
- Hammond, P. M. 1992 Species inventory. In Global biodivers- ity: status of the Earth's living resources (ed. B. Groombridge), pp. 17-39. London: Chapman & Hall.
- Hawksworth, D. L. & Kalin-Arroyo, M. T. 1995 Magnitude and distribution of biodiversity. In Global biodiversity assess- ment (ed. V. H. Heywood), pp. 107-199. Cambridge Uni- versity Press.
- He, Y., Tian, J., Luo, X. & Zhang, T. 2003 Image enhance- ment and minutiae matching in fingerprint verification. Pattern Recognition Lett. 24, 1349-1360.
- Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. 2003 Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313-321. (DOI 10.1098/rspb. 2002.2218.)
- Hopkins, G. W. & Freckleton, R. P. 2002 Decline in the num- bers of amateur and professional taxonomists: implications for conservation. Anim. Conserv. 5, 245-249.
- Hyde, K. D., Ho, W. H., Taylor, J. E. & Hawksworth, D. L. 2000 Estimating the extent of fungal diversity in the tropics. Phil. Trans. R. Soc. Lond. B (2004) In Nature and human society: the quest for a sustainable world (ed. P. H. Raven & T. Williams), pp. 156-175. Washington, DC: National Academy Press.
- Jarman, K. H., Cebula, S. T., Saenz, A. J., Petersen, C. E., Valentine, N. B., Kingsley, M. T. & Wahl, K. L. 2000 An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spec- trometry. Analyt. Chem. 72, 1217-1223.
- Jarvie, J. K. & Stevens, P. F. 1998 Interactive keys, inventory, and conservation. Conserv. Biol. 12, 222-224.
- Jeffries, H. P., Berman, M. S., Poularikas, A. D., Katsinis, C., Melas, I., Sherman, K. & Bivins, L. 1984 Automated sizing, counting and identification of zooplankton by pattern recog- nition. Mar. Biol. 78, 329-334.
- Jonker, R., Groben, R., Tarran, G., Medlin, L., Wilkins, M., Garcia, L., Zabala, L. & Boddy, L. 2000 Automated identifi- cation and characterisation of microbial populations using flow cytometry: the AIMS project. Scientia Mar. 64, 225- 234.
- Lang, R. & Warwick, K. 2002 The plastic self organising map. See http://www.cyber.rdg.ac.uk/research/publications/01183. pdf. Longford, M., Taylor, G. E. & Flenley, J. R. 1990 Com- puterised identification of pollen grains by texture analysis. Rev. Palaeobot. Palynol. 64, 197-203.
- Lu, G., Zhang, D. & Wang, K. 2003 Palmprint recognition using eigenpalms features. Pattern Recognition Lett. 24, 1463-1467.
- Lucas, S.M. 1997 Face recognition with the continuous n- tuple classifier. In British Machine Vision Conference, 1997, pp. 222-231. See http://www.bmva.ac.uk/bmvc/1997/ papers/113/paper.html.
- McCall, H., Bravo, I., Lindley, J. A. & Reguera, B. 1996 Phy- toplankton recognition using parametric discriminants. J. Plankton Res. 18, 393-410.
- May, R. M. 1988 How many species are there on earth? Science 241, 1441-1449.
- May, R. M. 1990 How many species? Phil. Trans. R. Soc. Lond. B 330, 293-304.
- May, R. M. 2000 The dimensions of life on earth. In Nature and human society: the quest for a sustainable world (ed. P. H. Raven & T. Williams), pp. 30-45. Washington, DC: National Academy Press.
- Moore, A. & Miller, R. H. 2002 Automated identification of optically sensed aphid (Homoptera: Aphidae) wingbeat wave- forms. Ann. Entomol. Soc. Am. 95, 1-8.
- Morgan, A., Boddy, L., Mordue, J. E. M. & Morris, C. W. 1998 Evaluation of artificial neural networks for fungal identification, employing morphometric data from spores of Pestalotiopis species. Mycol. Res. 102, 975-984.
- Morris, C. W., Autret, A. & Boddy, L. 2001 Support vector machines for identifying organisms-a comparison with strongly partitioned radial basis function networks. Ecol. Model. 146, 57-67.
- Mound, L. A. & Gaston, K. J. 1993 Conservation and system- atics-the agony and the ecstasy. In Perspectives on insect con- servation (ed. K. J. Gaston, T. R. New & M. J. Samways), pp. 185-195. Andover: Intercept.
- O'Neill, M. A. & Curtis-Rouse, M. 2002 An engineering study for the design of a Computational MicroBot (CMB). Tech- nical Document. Tucson, AZ: Morpho Inc.
- O'Neill, M. A., Gauld, I. D., Gaston, K. J. & Weeks, P. J. D. 2000 Daisy: an automated invertebrate identification system using holistic vision techniques. In Proc. Inaugural Meeting BioNET-INTERNATIONAL Group for Computer-Aided Tax- onomy (BIGCAT) (ed. D. Chesmore, L. Yorke, P. Bridge & S. Gallagher), pp. 13-22. Egham: BioNET-INTER- NATIONAL Technical Secretariat.
- O'Neill, M. A., Burns, G. A. P. C. & Hilgetag, C. C. 2002 The PUPS-MOSIX environment: a homeostatic environment for neuro-and bio-informatic applications. In Neuroscience data- bases: a practical guide (ed. R. Ko ¨tter), pp. 187-202. Boston, MA: Kluwer.
- Parsons, S. 2001 Identification of New Zealand bats (Chalinobus tuberculatus and Mystacina tuberculata) in flight from analysis of echolocation calls by artificial neural net- works. J. Zool. (Lond.) 253, 447-456.
- Parsons, S. & Jones, G. 2000 Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. J. Exp. Biol. 203, 2641-2656.
- Patterson, D. J. 2003 Progressing towards a biological names register. Nature 422, 661.
- Pech-Pacheco, J. L. & Alvarez-Borrego, J. 1998 Optical-digital system applied to the identification of five phytoplankton species. Mar. Biol. 132, 357-365.
- Penev, P. S. & Atick, J. J. 1996 Local feature analysis: a general statistical theory for object representation. Network: Comput. Neural Systems 7, 477-500.
- Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1992 Numerical recipes in C: the art of scientific comput- ing, 2nd edn. Cambridge University Press.
- Rambold, G. & Agerer, R. 1997 DEEMY-the concept of a characterization and determination system for ectomycorrhi- zae. Mycorrhiza 7, 113-116.
- Schwenker, F., Dietrich, C., Kestler, H. A., Riede, K. & Palm, G. 2003 Radial basis function neural networks and temporal fusion for the classification of bioacoustic time series. Neuro- computing 51, 265-275.
- Simmonds, E. J., Armstrong, F. & Copland, P. J. 1996 Species identification using wideband backscatter with neural net- work and discriminant analysis. ICES J. Mar. Sci. 53, 189-195.
- Simonetti, J. A. 1997 Biodiversity and a taxonomy of Chilean taxonomists. Biodiv. Conserv. 6, 633-637.
- Solow, A., Mound, L. A. & Gaston, K. J. 1995 Estimating the rate of synonymy. Syst. Biol. 44, 93-96.
- Tautz, D., Arctander, P., Minelli, A., Thomas, R. H. & Vogler, A. P. 2002 DNA points the way ahead in taxonomy. Nature 418, 479.
- Tautz, D., Arctander, P., Minelli, A., Thomas, R. H. & Vogler, A. P. 2003 A plea for DNA taxonomy. Trends Ecol. Evol. 18, 70-74.
- Tsalakanidou, F., Tzovaras, D. & Strintzis, M. G. 2003 Use of depth and colour eigenfaces for face recognition. Pattern Recognition Lett. 24, 1427-1435.
- Turk, M. & Pentland, A. P. 1991 Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71-86.
- Phil. Trans. R. Soc. Lond. B (2004)
- van de Vooren, J. G., Polder, G. & van de Heijden, G. W. A. M. 1992 Identification of mushroom cultivars using image analysis. Trans. ASAE 35, 347-350.
- Vaughan, N., Jones, G. & Harris, S. 1997 Identification of Bri- tish bat species by multivariate analysis of echolocation call parameters. Int. J. Anim. Sound Record. 7, 189-207.
- Watson, A. T., O'Neill, M. A. & Kitching, I. J. 2003 Auto- mated identification of live moths (macrolepidoptera) using Digital Automated Identification SYstem (DAISY). Syst. Biodiv. 1, 287-300.
- Weeks, P. J. D. & Gaston, K. J. 1997 Image analysis, neural networks, and the taxonomic impediment to biodiversity studies. Biodiv. Conserv. 6, 263-274.
- Weeks, P. J. D., Gauld, I. D., Gaston, K. J. & O'Neill, M. A. 1997 Automating the identification of insects: a new solution to an old problem. Bull. Entomol. Res. 87, 203-211.
- Weeks, P. J. D., O'Neill, M. A., Gaston, K. J. & Gauld, I. D. 1999a Species-identification of wasps using principal component associative memories. Image Vis. Comput. 17, 861-866.
- Weeks, P. J. D., O'Neill, M. A., Gaston, K. J. & Gauld, I. D. 1999b Automating insect identification: exploring the limi- tations of a prototype system. J. Appl. Entomol. 123, 1-8.
- White, I. M. & Scott, P. R. 1994 Computer identification resources for pest identification: a review. In The identifi- cation and characterisation of pest organisms (ed. D. L. Hawksworth), pp. 129-137. Wallingford: CAB Inter- national.
- Wilkins, M. F., Boddy, L., Morris, C. W. & Jonker, R. R. 1999 Identification of phytoplankton from flow cytometry data by using radial basis function neural networks. Appl. Environ. Microbiol. 65, 4404-4410.
- Wilson, E. O. 2003 The encyclopedia of life. Trends Ecol. Evol. 18, 77-80.
- Wu, J. & Zhou, Z-H. 2002 Face recognition with one training image per person. Pattern Recognition Lett. 23, 1711-1719.
- Yu, D. S., Kokko, E. G., Barron, J. R., Schaalje, G. B. & Gowen, B. E. 1992 Identification of ichneumonid wasps using image analysis of wasps. Syst. Entomol. 17, 389-395.