Academia.eduAcademia.edu

Outline

Local convergence of Newton’s method on the Heisenberg group

2016, Journal of Computational and Applied Mathematics

https://doi.org/10.1016/J.CAM.2015.12.025

Abstract

In the present paper, we study Newton's method on the Heisenberg group for solving the equation f (x) = 0, where f is a mapping from Heisenberg group to its Lie algebra. Under certain generalized Lipschitz condition, we obtain the convergence radius of Newton's method and the estimation of the uniqueness ball of the zero point of f. Some applications to special cases including Kantorovich's condition and γ-condition are provided. The determination of an approximate zero point of an analytic mapping is also presented. Concrete examples are given to illustrate applications of our results.

References (37)

  1. L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon, Oxford, 1982.
  2. X.H. Wang, Convergence of Newton's method and uniqueness of the solution of equations in Banach space, IMA J. Numer. Anal. 20 (1) (2000) 123-134.
  3. X.H. Wang, Convergence of Newton's method and inverse function theorem in Banach spaces, Math. Comp. 225 (1999) 169-186.
  4. S. Smale, Newton's method estimates from data at one point, in: R. Ewing, K. Gross, C. Martin (Eds.), The Merging of Disciplines NewDirections in Pure, Applied and Computational Mathematics, Springer, NewYork, 1986, pp. 185-196.
  5. P.A. Absil, C.G. Baker, K.A. Gallivan, Trust-region methods on Riemannian manifolds, Found. Comput. Math. 7 (2007) 303-330.
  6. R.A. dler, J.P. Dedieu, J. Margulies, M. Martens, M. Shub, Newton's method on Riemannian manifolds and a geometric model for human spine, IMA J. Numer. Anal. 22 (2002) 1-32.
  7. A. Edelman, T.A. Arias, T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. 20 (1998) 303-353.
  8. C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, in: Mathematics and Its Applications, vol. 297, Kluwer Academic Publishers, Dordrecht, 1994.
  9. F. Alvarez, J. Bolte, J. Munier, A unifying local convergence result for Newton's method in Riemannian manifolds, Found. Comput. Math. 8 (2008) 197-226.
  10. J.P. Dedieu, P. Priouret, G. Malajovich, Newton's method on Riemannian manifolds: covariant alpha theory, IMA J. Numer. Anal. 23 (2003) 395-419.
  11. O.P. Ferreira, B.F. Svaiter, Kantorovich's theorem on Newton's method in Riemannian manifolds, J. Complexity 18 (2002) 304-329.
  12. C. Li, J.H. Wang, Newton's method for sections on Riemannian manifolds: Generalized covariant α-theory, J. Complexity 24 (2008) 423-451.
  13. C. Li, J.H. Wang, Newton's method on Riemannian manifolds: Smale's point estimate theory under the γ -condition, IMA J. Numer. Anal. 26 (2006) 228-251.
  14. C. Li, J.H. Wang, Convergence of the Newton method and uniqueness of zeros of vector fields on Riemannian manifolds, Sci. China Ser. A 48 (2005) 1465-1478.
  15. J.H. Wang, C. Li, Uniqueness of the singular point of vector field on Riemannian manifold under the γ -condition, J. Complexity 22 (2006) 533-548.
  16. R.E. Mahony, The constrained Newton method on a Lie group and the symmetric eigenvalue problem, Linear Algebra Appl. 248 (1996) 67-89.
  17. R.E. Mahony, U. Helmke, J.B. Moore, Pole placement algorithms for symmetric realisations, in: Proceedings of 32nd IEEE Conference on Decision and Control, San Antonio, TX, 1993, pp. 1355-1358.
  18. S.T. Smith, Optimization techniques on Riemannian manifolds, in: Fields Institute Communications, Vol. 3, American Mathematical Society, Providence, RI, 1994, pp. 113-146.
  19. B. Owren, B. Welfert, The Newton iteration on Lie groups, BIT Numer. 40 (2000) 121-145.
  20. J.H. Wang, C. Li, Kantorovich's theorems for Newton's method for mappings and optimization problems on Lie groups, IMA J. Numer. Anal. 31 (2011) 322-347.
  21. C. Li, J.H. Wang, J.P. Dedieu, Newton's Method on Lie groups: Smale's point estimate theory under the γ -condition, J. Complexity 25 (2009) 128-151.
  22. S.T. Ali, J.P. Antoine, J.P. Gazeau, Coherent States, Wavelets and their Generalizations, Springer, New York, Berlin, Heidelberg, 2000.
  23. E. Binz, S. Pods, The Geometry of Heisenberg Groups: With Applications in Signal Theory, Optics, Quantization, and Field Quantization, The American Mathematical Society, 2008.
  24. G.B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, 1989.
  25. A. Gerrard, J.M. Burch, Introduction to Matrix Methods in Optics, John Wiley and Sons, 1975.
  26. M. Gosson, Symplectic Geometry-Weyl-Moyal-Calculus, and Quantum Mechanics, Birkhauser Verlag, Basel, Boston, Berlin, 2006.
  27. V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, 1991.
  28. K.H. Grochenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston, 2000.
  29. W.J. Schempp, Harmonic Analysis on the Heisenberg Nilpotent Lie Group with Applications to Signal Theory, in: Pitman Research Notes in Mathematics Series, vol. 147, Longman Scientific and Technical, 1986.
  30. V.S. Varadarajan, Lie Groups, Lie Algebras and their Representations, in: GTM, vol. 102, Springer-Verlag, New York, 1984.
  31. L. Capogna, D. Danielli, S.D. Pauls, J.T. Tyson, An introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhaser Verlag AG, 2007.
  32. L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation, Springer, New York, 1997.
  33. S. Smale, Complexity theory and numerical analysis, Acta Numer. 6 (1997) 523-551.
  34. X.H. Wang, X.H. Xuan, Random polynomial space and computational complexity theory, Sci. China Ser. A 30 (1987) 673-684.
  35. P.Y. Chen, Approximate zeros of quadratically convergent algorithms, Math. Comp. 63 (1994) 247-270.
  36. H. Munthe-Kaas, High order Runge-Kutta methods on manifolds, Appl. Numer. Math. 29 (1999) 115-127.
  37. B.C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, first ed., Springer, ISBN: 0-387-40122-9, 2003, Corr. 2nd printing edition (August 7, 2003).