Classical and quantum satisfiability
2012, Electronic Proceedings in Theoretical Computer Science
https://doi.org/10.4204/EPTCS.81.6Abstract
We present the linear algebraic definition of QSAT and propose a direct logical characterization of such a definition. We then prove that this logical version of QSAT is not an extension of classical satisfiability problem (SAT). This shows that QSAT does not allow a direct comparison between the complexity classes NP and QMA, for which SAT and QSAT are respectively complete.
References (10)
- S. Arora & B. Barak (2009): Computational Complexity: A modern approach. Cambridge Univeristy Press, Cambridge.
- C.H. Bennet, E. Bernstein, G. Brassard & U. Vazirani (1997): Strengths and weakness of quantum computing. SIAM Journal of Computing 26(5), pp. 1510-1523, doi:10.1137/S0097539796300933.
- S. Bravyi (2006): Efficient algorithm for a quantum analogue of 2-SAT. ArXiv:quant-ph/0602108v1.
- S. Bravyi, C. Moore & A. Russell (2010): Bounds on the Quantum Satisfiability Threshold. In: Innovations in Computer Science (LCS 2010), 978-7-302-21752-7, Tsinghua University Press, pp. 391-402.
- C. Cohen-Tannoudji, B. Diu & F. Lalo (1977): Quantum Mechanics. Wiley, New York.
- G. Georgakopoulos, D. Kavvadias & C.H. Papadimitriou (1988): Probabilistic satisfiability. Journal of Complexity 4(1), pp. 1-11, doi:10.1016/0885-064X(88)90006-4.
- A. Kitaev, A. Shen & M. Vyalyi (2002): Classical and quantum computation. Graduate Studies in Mathe- matics 47, American Mathematical Society, New York.
- C.R. Laumann, R. Moessner, A. Scardicchio & S.L. Sondhi (2010): Random quantum satisfiability. Quantum Information and Computation 10(1-2), pp. 1-15.
- Y-K. Liu (2006): Consistency of Local Density Matrices is QMA-Complete. In J. Diaz et al., editor: APPROX and RANDOM 2006, LNCS 4110, Springer-Verlag, pp. 438-449, doi:10.1007/11830924_40.
- M.A. Nielsen & I.L. Chuang (2000): Quantum Computation and Quantum Information. Cambridge Univer- sity Press, Cambridge.